

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/rko/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/rko/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

rkt - the pod-native container engine

[image: godoc] [http://godoc.org/github.com/rkt/rkt]
[image: Build Status (Travis)] [https://travis-ci.org/rkt/rkt]
[image: Build Status (SemaphoreCI)] [https://semaphoreci.com/rkt/rkt]
[image: Build Status (Jenkins)] [https://jenkins-rkt-public.prod.coreos.systems/view/rkt/job/rkt-master-periodic/]

[image: rkt Logo]

rkt (pronounced like a “rocket”) is a CLI for running application containers on Linux. rkt is designed to be secure, composable, and standards-based.

Some of rkt’s key features and goals include:

	Pod-native: rkt’s basic unit of execution is a pod [https://coreos.com/blog/rkt-and-kubernetes.html], linking together resources and user applications in a self-contained environment.

	Security: rkt is developed with a principle of “secure-by-default”, and includes a number of important security features like support for SELinux, TPM measurement, and running app containers in hardware-isolated VMs.

	Composability: rkt is designed for first-class integration with init systems (like systemd, upstart) and cluster orchestration tools (like Kubernetes and Nomad), and supports swappable execution engines.

	Open standards and compatibility: rkt implements the appc specification, supports the Container Networking Interface specification [https://github.com/appc/cni], and can run Docker images and OCI images [https://github.com/opencontainers/image-spec]. Broader native support for OCI images and runtimes is in development [https://github.com/rkt/rkt/projects/4].

Project status

The rkt v1.x series provides command line user interface and on-disk data structures stability for external development. Any major changes to those primary areas will be clearly communicated, and a formal deprecation process conducted for any retired features.

Check out the roadmap for more details on the future of rkt.

Trying out rkt

To get started quickly using rkt for the first time, start with the “trying out rkt” document.
Also check rkt support on your Linux distribution.
For an end-to-end example of building an application from scratch and running it with rkt, check out the getting started guide.

Getting help with rkt

There are a number of different avenues for seeking help and communicating with the rkt community:

	For bugs and feature requests (including documentation!), file an issue [https://github.com/rkt/rkt/issues/new]

	For general discussion about both using and developing rkt, join the rkt-dev [https://groups.google.com/forum/?hl=en#!forum/rkt-dev] mailing list

	For real-time discussion, join us on IRC: #rkt-dev on freenode.org

	For more details on rkt development plans, check out the GitHub milestones [https://github.com/rkt/rkt/milestones]

Most discussion about rkt development happens on GitHub via issues and pull requests.
The rkt developers also host a semi-regular community sync meeting open to the public.
This sync usually features demos, updates on the roadmap, and time for anyone from the community to ask questions of the developers or share users stories with others.
For more details, including how to join and recordings of previous syncs, see the sync doc on Google Docs [https://docs.google.com/document/d/1NT_J5X2QErtKgd8Y3TFXNknWhJx_yOCMJnq3Iy2jPgE/edit#].

Contributing to rkt

rkt is an open source project and contributions are gladly welcomed!
See the Hacking Guide for more information on how to build and work on rkt.
See CONTRIBUTING for details on submitting patches and the contribution workflow.

Licensing

Unless otherwise noted, all code in the rkt repository is licensed under the Apache 2.0 license.
Some portions of the codebase are derived from other projects under different licenses; the appropriate information can be found in the header of those source files, as applicable.

Security disclosure

If you suspect you have found a security vulnerability in rkt, please do not file a GitHub issue, but instead email security@coreos.com with the full details, including steps to reproduce the issue.
CoreOS is currently the primary sponsor of rkt development, and all reports are thoroughly investigated by CoreOS engineers.
For more information, see the CoreOS security disclosure page [https://coreos.com/security/disclosure/].

Known issues

Due to limitations in the Linux kernel, using rkt’s overlay support on top of an overlay filesystem requires the upperdir and workdir to support the creation of trusted.* extended attributes and valid d_type in readdir responses (see kernel/Documentation/filesystems/overlayfs.txt [https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt]). When starting rkt inside rkt this means that either:

	the inner /var/lib/rkt directory needs to be mounted on a host volume.

	the outer or inner rkt container needs to be started using --no-overlay.

Due to a bug in the Linux kernel, using rkt when /var/lib/rkt is on btrfs requires Linux 4.5.2+ (#2175 [https://github.com/rkt/rkt/issues/2175]).

Due to a bug in the Linux kernel, using rkt’s overlay support in conjunction with SELinux requires a set of patches that are only currently available on some Linux distributions (for example, CoreOS Linux [https://github.com/coreos/coreos-overlay/tree/master/sys-kernel/coreos-sources/files]). Work is ongoing to merge this work into the mainline Linux kernel (#1727 [https://github.com/rkt/rkt/issues/1727#issuecomment-173203129]).

Linux 3.18+ is required to successfully garbage collect rkt pods when system services such as udevd are in a slave mount namespace (see lazy umounts on unlinked files and directories [https://github.com/torvalds/linux/commit/8ed936b] and #1922 [https://github.com/rkt/rkt/issues/1922]).

Related Links

Integrations and Production Users

	Projects integrating with rkt [https://github.com/rkt/rkt/blob/master/Documentation/integrations.md]

	Production users [https://github.com/rkt/rkt/blob/master/Documentation/production-users.md]

1.28.1

This is a minor bugfix release. It does not contain any changes to the rkt code, but it updates dependencies and runtime versions for bugfixes:

	vendor: update go-systemd to v15 (#3759 [https://github.com/rkt/rkt/pull/3759]). rkt stopped working when running in a service with systemd v234. This update fixes it.

	scripts: update rkt-builder version to 1.3.0 (#3754 [https://github.com/rkt/rkt/pull/3754]). This updates the default Go runtime to 1.8, fixing #3738 [https://github.com/rkt/rkt/issues/3738].

1.28.0

This release contains changes to the behavior of rkt run, rkt status, and rkt fly to make them more consistent. Two of them need particular attention:

	rkt status can now omit the pid field when non-existent. Use --wait[-ready] to ensure a pid will be available.

	the default[-restricted] network is not added by default when a custom network is specified with --net.

There are also some improvements on documentation and tests working on arm64.

New features and UX changes

	stage0/status: fix failure when systemd never runs in stage1 (#3713 [https://github.com/rkt/rkt/pull/3713]). This changes the behavior of rkt status when a PID is not available: instead of crashing, it will now omit the pid field. Users that need to read the PID shortly after an invocation of rkt run should now use the --wait[-ready] flag explicitly.

	BREAKING network: do not automatically add default* networks when custom ones are specified (#3685 [https://github.com/rkt/rkt/pull/3685]).

	stage1/fly: preserve environment between run and enter (#3712 [https://github.com/rkt/rkt/pull/3712]). Fly run now writes the app env file, and fly enter reads it.

	stage1/fly: make run/enter honour uid/gid/suppGids (#3717 [https://github.com/rkt/rkt/pull/3717]). Refactored common functionality out of run.

Bugfixes

	stage1/init/units: keep journald running while apps are shutting down (#3726 [https://github.com/rkt/rkt/pull/3726]). This prevents a race when apps are writing to their stdout/err (and output is being sent to stage1’s journal) while shutting down. If journald terminates before the apps finish shutting down, their output will be lost.

	tests: get functional tests working on arm64 (#3737 [https://github.com/rkt/rkt/pull/3737]). Various arch fixups to get make check with a coreos stage1 working on arm64 machines.

	Fix --user --group on arm64 (#3736 [https://github.com/rkt/rkt/pull/3736]). Fixes issue https://github.com/rkt/rkt/issues/3714 (rkt run --user fails on arm64).

Other changes

	docs: update CLI flags in run.md (#3748 [https://github.com/rkt/rkt/pull/3748]). Also added rkt-run options present in rkt 1.27.0 but not present in the run.md markdown. The entries in markdown have been sorted.

	tests/net: skip TestNetCustomBridge on semaphore (#3740 [https://github.com/rkt/rkt/pull/3740]). Reference https://github.com/rkt/rkt/issues/3739

	doc: mention external stage1s (#3723 [https://github.com/rkt/rkt/pull/3723]). This was discussed on:
https://github.com/rkt/rkt/pull/3645#issuecomment-296865635

	rkt/pubkeys: print debug logs on discovery errors (#3705 [https://github.com/rkt/rkt/pull/3705]). Thisreorders log-printing and error-returning when pubkeys discovery
fails, in order to print useful debugging information on error.

	docs: correct rkt pronunciation (#3674 [https://github.com/rkt/rkt/pull/3674]). rkt has an icon of a rocket but previously the official pronunciation was “rock-it” which is incompatible with the logo. This change fixes that.

	stage0: fix message formatting errors, stale forward-vars (#3722 [https://github.com/rkt/rkt/pull/3722]).

1.27.0

This minor release contains bugfixes and other improvements related to the tests and the documentation.

New Features

	stage1/kvm: add arm64 build (#3690 [https://github.com/rkt/rkt/pull/3690]).

Bugfixes

	stage0: list|status –format=json panics: RuntimeApp.Mounts.AppVolume is optional (#3699 [https://github.com/rkt/rkt/pull/3699]). When it is nil, the Volume info at the Pod level (with the same name) should be used. Without this patch rkt list --format=json panics on a nil pointer when Apps reference Volumes from the Pod level.

	imagestore: Fix sql resource leaks (#3682 [https://github.com/rkt/rkt/pull/3682]). When using sql queries the rows iterator needs to be closed if the entire query result is not iterated over. Failure to close the iterator results in resource leakage.

Other changes

	networking: change the default-restricted subnet (#3718 [https://github.com/rkt/rkt/pull/3718]). Previously, we were using 172.17/16, which conflicts with the default
Docker networking. Change it to 172.31/16.

	scripts/pkg: improved detection of active mounts (#3710 [https://github.com/rkt/rkt/pull/3710]). On systems which have /var/lib/rkt as a separate partition, the active mount detection in before-remove needs to not get confused by the presence of /var/lib/rkt itself as a mount. Therefore a longer path is used for active mount detection.

	stage1/usr_from_coreos: add new image signing sub-key EF4B4ED9 (#3686 [https://github.com/rkt/rkt/pull/3686]). See coreos/init#236.

	scripts: skip nonexistent stage1 images when packaging (#3687 [https://github.com/rkt/rkt/pull/3687]). Not all builds will generate all stage1 images. It depends on what ./configure flags (--with-stage1-flavors) were used.

	tests: Only run race test on supported arch (#3684 [https://github.com/rkt/rkt/pull/3684]). Fixes build errors like these when run on non amd64 machines:

	functional test: Fix manifest arch error (#3681 [https://github.com/rkt/rkt/pull/3681]). The manifest contains values for the ACI arch and OS, not the go language values.

	Documentation updates: #3680 [https://github.com/rkt/rkt/pull/3680], #3679 [https://github.com/rkt/rkt/pull/3679], #3700 [https://github.com/rkt/rkt/pull/3700], #3709 [https://github.com/rkt/rkt/pull/3709]

1.26.0

This minor release contains bugfixes and other improvements. It also adds better support for the arm architecture to rkt, so that you can now fetch images via autodiscovery and have the correct seccomp whitelist to run them. Also notable is the new possibilty to pass extra kernel parameters to kvm, and last but not least a significant prepare/run speedup in stage0. This also introduces stricter validation on volume names, now rejecting duplicate ones.

New Features

	stage1: improve duplicate mount-volume detection (#3666 [https://github.com/rkt/rkt/pull/3666]). Breaking change: volumes with duplicate names are now rejected.

	stage0/{run,prepare}: remove ondisk verification (#3623 [https://github.com/rkt/rkt/pull/3623]). For backwards compatibility, specifying ‘insecure-options=ondisk’ will still run without error, however it will also not do anything.

	kvm/qemu: add extra kernel parameters (#3644 [https://github.com/rkt/rkt/pull/3644]).

Bugfixes

	seccomp: add arch-specific syscalls on ARM (#3636 [https://github.com/rkt/rkt/pull/3636]).

	fetch: use proper appc os/arch labels (#3621 [https://github.com/rkt/rkt/pull/3621]).

	tests/caps: skip if overlayfs support is missing (#3670 [https://github.com/rkt/rkt/pull/3670]).

	build/stage1: transfer user xattr data (#3665 [https://github.com/rkt/rkt/pull/3665]).

	stage1: include <sys/sysmacros.h> for makedev function (#3604 [https://github.com/rkt/rkt/pull/3604]).

Other changes

	Add code of conduct (#3661 [https://github.com/rkt/rkt/pull/3661]). Required by CNCF.

	rkt list|status: app state info (i.e. exit codes) in –format=json (#3638 [https://github.com/rkt/rkt/pull/3638]).

	integrations: add mesos (#3624 [https://github.com/rkt/rkt/pull/3624]).

	Documentation: add container linux and tectonic as production users (#3618 [https://github.com/rkt/rkt/pull/3618]).

	Documentation: add Gentoo to the list of distributions that have rkt (#3613 [https://github.com/rkt/rkt/pull/3613]).

	Documentation: add some individual blog posts (#3611 [https://github.com/rkt/rkt/pull/3611]).

	Documentation: cleanup stage1 stuff (#3612 [https://github.com/rkt/rkt/pull/3612]).

	dist: use multi-user.target instead of default.target (#3620 [https://github.com/rkt/rkt/pull/3620]).

	added production-users and integrations pages (#3602 [https://github.com/rkt/rkt/pull/3602]).

	scripts: update rkt-builder version (#3595 [https://github.com/rkt/rkt/pull/3595]).

1.25.0

This minor release contains bugfixes and other improvements related to the KVM flavour, which is now using qemu-kvm by default.

New Features:

	Switch default kvm flavour from lkvm to qemu (#3562 [https://github.com/rkt/rkt/pull/3562]).

Bug fixes

	stage1/kvm: Change RAM calculation, and increase minimum (#3572 [https://github.com/rkt/rkt/pull/3572]).

	stage1: Ensure ptmx device usable by non-root for all flavours (#3484 [https://github.com/rkt/rkt/pull/3484]).

Other changes:

	tests: fix TestNonRootReadInfo when $HOME is only accessible by current user (#3580 [https://github.com/rkt/rkt/pull/3580]).

	glide: bump grpc to 1.0.4 (#3584 [https://github.com/rkt/rkt/pull/3584]).

	vendor: bump docker2aci to 0.16.0 (#3591 [https://github.com/rkt/rkt/pull/3591]).

1.24.0

This release includes experimental support for attaching to a running application’s input and output. It also introduces
a more finely grained pull-policy flag.

New Features:

	rkt: add experimental support for attachable applications (#3396 [https://github.com/rkt/rkt/pull/3396]).
It consists of:
	a new attach subcommand

	a set of per-app flags to control stdin/stdout/stderr modes

	a stage1 iottymux binary for multiplexing and attaching

	two new templated stage1 services, iomux and ttymux

	run/prepare/fetch: replace –no-store and –store-only with –pull-policy (#3554 [https://github.com/rkt/rkt/pull/3554]).
	Replaces the --no-store and --store-only flags with a singular
flag --pull-policy.

	can accept one of three things, never, new, and update.

	--no-store has been aliased to --pull-policy=update

	--store-only has been aliased to --pull-policy=never

Bug fixes

	image gc: don’t remove images that currently running pods were made from (#3549 [https://github.com/rkt/rkt/pull/3549]).

	stage1/fly: evaluate symlinks in mount targets (#3570 [https://github.com/rkt/rkt/pull/3570]).

	lib/app: use runtime app mounts and appVolumes rather than mountpoints (#3571 [https://github.com/rkt/rkt/pull/3571]).

Other changes:

	kvm/qemu: Update QEMU to v2.8.0 (#3568 [https://github.com/rkt/rkt/pull/3568]).

	stage0/app-add: CLI args should override image ones (#3566 [https://github.com/rkt/rkt/pull/3566]).

	lib/app: use runtime app mounts and appVolumes rather than mountpoints (#3571 [https://github.com/rkt/rkt/pull/3571]).

	kvm/lkvm: update lkvm version to HEAD (#3569 [https://github.com/rkt/rkt/pull/3569]).

	vendor: bump appc to v0.8.10 (#3574 [https://github.com/rkt/rkt/pull/3574]).

	docs: (#3552 [https://github.com/rkt/rkt/pull/3552])

Build & Test:

	tests: remove gexpect from TestAppUserGroup (#3561 [https://github.com/rkt/rkt/pull/3561]).

	travis: remove “gimme.local” script (#3556 [https://github.com/rkt/rkt/pull/3556]).

	tests: fix when $HOME is only accessible by current user (#3559 [https://github.com/rkt/rkt/pull/3559]).

	makelib: introduce –enable-incremental-build, enabling “go install” (#3553 [https://github.com/rkt/rkt/pull/3553]).

1.23.0

This release adds a lot of bugfixes around the rkt fly flavor, garbage collection, kvm, and the sandbox. The new experimental app subcommand now follows the semantic of CRI of not quitting prematurely if apps fail or exit. Finally docker2aci received an important update fixing issues with os/arch labels which caused issues on arm architectures, a big thanks here goes to @ybubnov for this contribution.

New features

	sandbox: don’t exit if an app fails (#3478 [https://github.com/rkt/rkt/pull/3478]). In contrast to regular rkt run behavior, the sandbox now does not quit if all or single apps fail or exit.

Bug fixes

	stage1: fix incorrect splitting function (#3541 [https://github.com/rkt/rkt/pull/3541]).

	sandbox/app-add: fix mount targets with absolute symlink targets (#3490 [https://github.com/rkt/rkt/pull/3490]).

	namefetcher: fix nil pointer dereference (#3536 [https://github.com/rkt/rkt/pull/3536]).

	Bump appc/docker2aci library version to 0.15.0 (#3534 [https://github.com/rkt/rkt/pull/3534]). This supports the conversion of images with various os/arch labels.

	stage1: uid shift systemd files (#3529 [https://github.com/rkt/rkt/pull/3529]).

	stage1/kvm/lkvm: chown files and dirs on creation (#3485 [https://github.com/rkt/rkt/pull/3485]).

	stage1/fly: record pgid and let stop fallback to it (#3523 [https://github.com/rkt/rkt/pull/3523]).

	common/overlay: allow data directory name with colon character (#3505 [https://github.com/rkt/rkt/pull/3505]).

	api-service: stop erroring when a pod is running (#3525 [https://github.com/rkt/rkt/pull/3525]).

	stage1/fly: clear FD_CLOEXEC only once (#3521 [https://github.com/rkt/rkt/pull/3521]).

	stage1: Add hostname to /etc/hosts (#3522 [https://github.com/rkt/rkt/pull/3522]).

	gc: avoid erroring in race to deletion (#3515 [https://github.com/rkt/rkt/pull/3515]).

	tests/rkt_stop: Wait for ‘stop’ command to complete (#3518 [https://github.com/rkt/rkt/pull/3518]).

	pkg/pod: avoid nil panic for missing pods (#3514 [https://github.com/rkt/rkt/pull/3514]).

Other changes

	stage1: move more logic out of AppUnit (#3496 [https://github.com/rkt/rkt/pull/3496]).

	tests: use appc schema instead of string templates (#3520 [https://github.com/rkt/rkt/pull/3520]).

	stage1: kvm: Update kernel to 4.9.2 (#3530 [https://github.com/rkt/rkt/pull/3530]).

	stage1: remount entire subcgroup r/w, instead of each knob (#3494 [https://github.com/rkt/rkt/pull/3494]).

	tests: update AWS CI setup (#3509 [https://github.com/rkt/rkt/pull/3509]).

	pkg/fileutil: helper function to get major, minor numbers of a device file (#3500 [https://github.com/rkt/rkt/pull/3500]).

	pkg/log: correctly handle var-arg printf params (#3516 [https://github.com/rkt/rkt/pull/3516]).

	Documentation/stop: describe –uuid-file option (#3511 [https://github.com/rkt/rkt/pull/3511]).

1.22.0

This is a stabilization release which includes better support for environments without systemd, improvements to GC behavior in complex scenarios, and several additional fixes.

New features and UX changes

	rkt/cat-manifest: add support for –uuid-file (#3498 [https://github.com/rkt/rkt/pull/3498]).

	stage1: fallback if systemd cgroup doesn’t exist (#3507 [https://github.com/rkt/rkt/pull/3507]).

	vendor: bump gocapability (#3493 [https://github.com/rkt/rkt/pull/3493]). This change renames sys_psacct to sys_pacct.

	stage0/app: pass debug flag to entrypoints (#3469 [https://github.com/rkt/rkt/pull/3469]).

Bug fixes

	gc: fix cleaning mounts and files (#3486 [https://github.com/rkt/rkt/pull/3486]). This improves GC behavior in case of busy mounts and other complex scenarios.

	mount: ensure empty volume paths exist for copy-up (#3468 [https://github.com/rkt/rkt/pull/3468]).

	rkt stop/rm: a pod must be closed after PodFromUUIDString() (#3492 [https://github.com/rkt/rkt/pull/3492]).

Other changes

	stage1/kvm: add a dash in kernel LOCALVERSION (#3489 [https://github.com/rkt/rkt/pull/3489]).

	stage1/kvm: Improve QEMU Makefile rules (#3474 [https://github.com/rkt/rkt/pull/3474]).

	pkg/pod: use IncludeMostDirs bitmask instead of constructing it (#3506 [https://github.com/rkt/rkt/pull/3506]).

	pkg/pod: add WaitReady, dry Sandbox methods (#3462 [https://github.com/rkt/rkt/pull/3462]).

	vendor: bump gexpect to 0.1.1 (#3467 [https://github.com/rkt/rkt/pull/3467]).

	common: fix ‘the the’ duplication in comment (#3497 [https://github.com/rkt/rkt/pull/3497]).

	docs: multiple updates (#3479 [https://github.com/rkt/rkt/pull/3479], #3501 [https://github.com/rkt/rkt/pull/3501], #3464 [https://github.com/rkt/rkt/pull/3464], #3495 [https://github.com/rkt/rkt/pull/3495]).

1.21.0

This release includes bugfixes for the experimental CRI support, more stable integration tests, and some other interesting changes:

	The default-restricted network changed from 172.16.28.0/24 to 172.17.0.0/26.

	The detailed roadmap for OCI support has been finalized.

New features

	Change the subnet for the default-restricted network (#3440 [https://github.com/rkt/rkt/pull/3440]), (#3459 [https://github.com/rkt/rkt/pull/3459]).

	Prepare for writable /proc/sys, and /sys (#3389 [https://github.com/rkt/rkt/pull/3389]).

	Documentation/proposals: add OCI Image Format roadmap (#3425 [https://github.com/rkt/rkt/pull/3425]).

Bug fixes

	stage1: app add, status didn’t work with empty vols (#3451 [https://github.com/rkt/rkt/pull/3451]).

	stage1: properly run defer’d umounts in app add (#3455 [https://github.com/rkt/rkt/pull/3455]).

	cri: correct ‘created’ timestamp (#3399 [https://github.com/rkt/rkt/pull/3399]).

	fly: ensure the target bin directory exists before building (#3436 [https://github.com/rkt/rkt/pull/3436]).

	rkt: misc systemd-related fixes (#3418 [https://github.com/rkt/rkt/pull/3418]).

Other changes

	pkg/mountinfo: move mountinfo parser to its own package (#3415 [https://github.com/rkt/rkt/pull/3415]).

	stage1: persist runtime parameters (#3432 [https://github.com/rkt/rkt/pull/3432]), (#3450 [https://github.com/rkt/rkt/pull/3450]).

	stage1: signal supervisor readiness (#3424 [https://github.com/rkt/rkt/pull/3424]), (#3439 [https://github.com/rkt/rkt/pull/3439]).

	sandbox: add missing flagDNSDomain and flagHostsEntries parameters (#3430 [https://github.com/rkt/rkt/pull/3430]).

	pkg/tar: fix variable name in error (#3433 [https://github.com/rkt/rkt/pull/3433]).

	tests: fix TestExport for the KVM+overlay case (#3435 [https://github.com/rkt/rkt/pull/3435]).

	tests: fix some potential gexpect hangs (#3443 [https://github.com/rkt/rkt/pull/3443]).

	tests: add smoke test for app sandbox (#3371 [https://github.com/rkt/rkt/pull/3371]).

	tests: tentative fixes for sporadic host and kvm failures (#3434 [https://github.com/rkt/rkt/pull/3434]).

	rkt: remove empty TODO (#3417 [https://github.com/rkt/rkt/pull/3417]).

	Documentation updates: #3446 [https://github.com/rkt/rkt/pull/3446], (#3421 [https://github.com/rkt/rkt/pull/3421]), (#3412 [https://github.com/rkt/rkt/pull/3412]).

1.20.0

This release contains additional bug fixes for the new experimental app subcommand, following the path towards the Container Runtime Interface (CRI).
It also adds first step towards OCI by introducing an internal concept called “distribution points”, which will allow rkt to recognize multiple image formats internally.
Finally the rkt fly flavor gained support for rkt enter.

New features and UX changes

	stage1/fly: Add a working rkt enter implementation (#3377 [https://github.com/rkt/rkt/pull/3377]).

Bug fixes:

	tests/build-and-run-test.sh: fix systemd revision parameter (#3395 [https://github.com/rkt/rkt/pull/3395]).

	namefetcher: Use ETag in fetchVerifiedURL() (#3374 [https://github.com/rkt/rkt/pull/3374]).

	rkt/run: validates pod manifest to make sure it contains at least one app (#3363 [https://github.com/rkt/rkt/pull/3363]).

	rkt/app: multiple bugfixes (#3405 [https://github.com/rkt/rkt/pull/3405]).

Other changes

	glide: deduplicate cni entries and update go-systemd (#3372 [https://github.com/rkt/rkt/pull/3372]).

	stage0: improve list –format behavior and flags (#3403 [https://github.com/rkt/rkt/pull/3403]).

	pkg/pod: flatten the pod state if-ladders (#3404 [https://github.com/rkt/rkt/pull/3404]).

	tests: adjust security tests for systemd v232 (#3401 [https://github.com/rkt/rkt/pull/3401]).

	image: export ImageListEntry type for image list (#3383 [https://github.com/rkt/rkt/pull/3383]).

	glide: bump gopsutil to v2.16.10 (#3400 [https://github.com/rkt/rkt/pull/3400]).

	stage1: update coreos base to alpha 1235.0.0 (#3388 [https://github.com/rkt/rkt/pull/3388]).

	rkt: Implement distribution points (#3369 [https://github.com/rkt/rkt/pull/3369]). This is the implementation of the distribution concept proposed in #2953 [https://github.com/rkt/rkt/pull/2953].

	build: add –with-stage1-systemd-revision option for src build (#3362 [https://github.com/rkt/rkt/pull/3362]).

	remove isReallyNil() (#3381 [https://github.com/rkt/rkt/pull/3381]). This is cleanup PR, removing some reflection based code.

	vendor: update appc/spec to 0.8.9 (#3384 [https://github.com/rkt/rkt/pull/3384]).

	vendor: Remove direct k8s dependency (#3312 [https://github.com/rkt/rkt/pull/3312]).

	Documentation updates: #3366 [https://github.com/rkt/rkt/pull/3366], #3376 [https://github.com/rkt/rkt/pull/3376], #3379 [https://github.com/rkt/rkt/pull/3379], #3406 [https://github.com/rkt/rkt/pull/3406], #3410 [https://github.com/rkt/rkt/pull/3410].

1.19.0

This release contains multiple changes to rkt core, bringing it more in line with the new Container Runtime Interface (CRI) from Kubernetes.

A new experimental app subcommand has been introduced, which allows creating a “pod sandbox” and dynamically mutating it at runtime. This feature is not yet completely stabilized, and is currently gated behind an experimental flag.

New features and UX changes

	rkt: experimental support for pod sandbox (#3318 [https://github.com/rkt/rkt/pull/3318]). This PR introduces an experimental app subcommand and many additional app-level options.

	rkt/image: align image selection behavior for the rm subcommand (#3353 [https://github.com/rkt/rkt/pull/3353]).

	stage1/init: leave privileged pods without stage2 mount-ns (#3290 [https://github.com/rkt/rkt/pull/3290]).

	stage0/image: list images output in JSON format (#3334 [https://github.com/rkt/rkt/pull/3334]).

	stage0/arch: initial support for ppc64le platform (#3315 [https://github.com/rkt/rkt/pull/3315]).

Bug fixes:

	gc: make sure CNI_PATH is same for gc and init (#3348 [https://github.com/rkt/rkt/pull/3348]).

	gc: clean up some GC leaks (#3317 [https://github.com/rkt/rkt/pull/3317]).

	stage0: minor wording fixes (#3351 [https://github.com/rkt/rkt/pull/3351]).

	setup-data-dir.sh: fallback to the mkdir/chmods if the rkt.conf doesn’t exist (#3335 [https://github.com/rkt/rkt/pull/3335]).

	scripts: add gpg to Debian dependencies (#3339 [https://github.com/rkt/rkt/pull/3339]).

	kvm: fix for breaking change in Debian Sid GCC default options (#3354 [https://github.com/rkt/rkt/pull/3354]).

	image/list: bring back field filtering in plaintext mode (#3361 [https://github.com/rkt/rkt/pull/3361]).

Other changes

	cgroup/v1: introduce mount flags to mountFsRO (#3350 [https://github.com/rkt/rkt/pull/3350]).

	kvm: update QEMU version to 2.7.0 (#3341 [https://github.com/rkt/rkt/pull/3341]).

	kvm: bump kernel version to 4.8.6, updated config (#3342 [https://github.com/rkt/rkt/pull/3342]).

	vendor: introduce kr/pretty and bump go-systemd (#3333 [https://github.com/rkt/rkt/pull/3333]).

	vendor: update docker2aci to 0.14.0 (#3356 [https://github.com/rkt/rkt/pull/3356]).

	tests: add the –debug option to more tests (#3340 [https://github.com/rkt/rkt/pull/3340]).

	scripts/build-rir: bump rkt-builder version to 1.1.1 (#3360 [https://github.com/rkt/rkt/pull/3360]).

	Documentation updates: #3321 [https://github.com/rkt/rkt/pull/3321], #3331 [https://github.com/rkt/rkt/pull/3331], #3325 [https://github.com/rkt/rkt/pull/3325].

1.18.0

This minor release contains bugfixes, UX enhancements, and other improvements.

UX changes:

	rkt: gate diagnostic output behind --debug (#3297 [https://github.com/rkt/rkt/pull/3297]).

	rkt: Change exit codes to 254 (#3261 [https://github.com/rkt/rkt/pull/3261]).

Bug fixes:

	stage1/kvm: correctly bind-mount read-only volumes (#3304 [https://github.com/rkt/rkt/pull/3304]).

	stage0/cas: apply xattr attributes (#3305 [https://github.com/rkt/rkt/pull/3305]).

	scripts/install-rkt: add iptables dependency (#3309 [https://github.com/rkt/rkt/pull/3309]).

	stage0/image: set proxy if InsecureSkipVerify is set (#3303 [https://github.com/rkt/rkt/pull/3303]).

Other changes

	vendor: update docker2aci to 0.13.0 (#3314 [https://github.com/rkt/rkt/pull/3314]). This fixes multiple fetching and conversion bugs, including two security issues.

	scripts: update glide vendor script (#3313 [https://github.com/rkt/rkt/pull/3313]).

	vendor: update appc/spec to v0.8.8 (#3310 [https://github.com/rkt/rkt/pull/3310]).

	stage1: update to CoreOS 1192.0.0 (and update sanity checks) (#3283 [https://github.com/rkt/rkt/pull/3283]).

	cgroup: introduce proper cgroup/v1, cgroup/v2 packages (#3277 [https://github.com/rkt/rkt/pull/3277]).

	Documentation updates: (#3281 [https://github.com/rkt/rkt/pull/3281]), (#3319 [https://github.com/rkt/rkt/pull/3319]), (#3308 [https://github.com/rkt/rkt/pull/3308]).

1.17.0

This is a minor release packaging rkt-api systemd service units, and fixing a bug caused by overly long lines in generated stage1 unit files.

New features and UX changes

	dist: Add systemd rkt-api service and socket (#3271 [https://github.com/rkt/rkt/pull/3271]).

	dist: package rkt-api unit files (#3275 [https://github.com/rkt/rkt/pull/3275]).

Bug fixes

	stage1: break down overlong property lines (#3279 [https://github.com/rkt/rkt/pull/3279]).

Other changes

	stage0: fix typo and some docstring style (#3266 [https://github.com/rkt/rkt/pull/3266]).

	stage0: Create an mtab symlink if not present (#3265 [https://github.com/rkt/rkt/pull/3265]).

	stage1: use systemd protection for kernel tunables (#3273 [https://github.com/rkt/rkt/pull/3273]).

	Documentation updates: (#3280 [https://github.com/rkt/rkt/pull/3280], #3263 [https://github.com/rkt/rkt/pull/3263], #3268 [https://github.com/rkt/rkt/pull/3268], #3254 [https://github.com/rkt/rkt/pull/3254], #3199 [https://github.com/rkt/rkt/pull/3199], #3256 [https://github.com/rkt/rkt/pull/3256])

1.16.0

This release contains an important bugfix for the stage1-host flavor, as well as initial internal support for cgroup2 and pod sandboxes as specified by kubernetes CRI (Container Runtime Interface).

Bug fixes

	stage1/host: fix systemd-nspawn args ordering (#3216 [https://github.com/rkt/rkt/pull/3216]). Fixes https://github.com/rkt/rkt/issues/3215.

New features

	rkt: support for unified cgroups (cgroup2) (#3032 [https://github.com/rkt/rkt/pull/3032]). This implements support for cgroups v2 along support for legacy version.

	cri: initial implementation of stage1 changes (#3218 [https://github.com/rkt/rkt/pull/3218]). This PR pulls the stage1-based changes from the CRI branch back into
master, leaving out the changes in stage0 (new app subcommands).

Other changes

	doc/using-rkt-with-systemd: fix the go app example (#3217 [https://github.com/rkt/rkt/pull/3217]).

	rkt: refactor app-level flags handling (#3209 [https://github.com/rkt/rkt/pull/3209]). This is in preparation for https://github.com/rkt/rkt/pull/3205

	docs/distributions: rearrange, add centos (#3212 [https://github.com/rkt/rkt/pull/3212]).

	rkt: Correct typos listed by the tool misspell (#3208 [https://github.com/rkt/rkt/pull/3208]).

1.15.0

This relase brings some expanded DNS configuration options, beta support for QEMU, recursive volume mounts, and improved sd_notify support.

New features

	DNS configuration improvements (#3161 [https://github.com/rkt/rkt/pull/3161]):
	Respect DNS results from CNI

	Add –dns=host mode to bind-mount the host’s /etc/resolv.conf

	Add –dns=none mode to ignore CNI DNS

	Add –hosts-entry (IP=HOSTNAME) to tweak the pod’s /etc/hosts

	Add –hosts-entry=host to bind-mount the host’s /etc/hosts

	Introduce QEMU support as an alternative KVM hypervisor (#2952 [https://github.com/rkt/rkt/pull/2952])

	add support for recursive volume/mounts (#2880 [https://github.com/rkt/rkt/pull/2880])

	stage1: allow sd_notify from the app in the container to the host (#2826 [https://github.com/rkt/rkt/pull/2826]).

Other changes

	rkt-monitor: bunch of improvements (#3093 [https://github.com/rkt/rkt/pull/3093])

	makefile/kvm: add dependency for copied files (#3197 [https://github.com/rkt/rkt/pull/3197])

	store: refactor GetRemote (#2975 [https://github.com/rkt/rkt/pull/2975]).

	build,stage1: include systemd dir when checking libs (#3186 [https://github.com/rkt/rkt/pull/3186])

	tests: volumes: add missing test volumeMountTestCasesNonRecursive (#3165 [https://github.com/rkt/rkt/pull/3165])

	kvm/pod: disable insecure-options=paths for kvm flavor (#3155 [https://github.com/rkt/rkt/pull/3155])

	stage0: don’t copy image annotations to pod manifest RuntimeApp annotations (#3100 [https://github.com/rkt/rkt/pull/3100])

	stage1: shutdown.service: don’t use /dev/console (#3148 [https://github.com/rkt/rkt/pull/3148])

	build: build simple .deb and .rpm packages (#3177 [https://github.com/rkt/rkt/pull/3177]). Add a simple script to build .deb and .rpm packages. This is not a substitute for a proper distro-maintained package.

	Documentation updates: (#3196 [https://github.com/rkt/rkt/pull/3196]) (#3192 [https://github.com/rkt/rkt/pull/3192]) (#3187 [https://github.com/rkt/rkt/pull/3187]) (#3185 [https://github.com/rkt/rkt/pull/3185]) (#3182 [https://github.com/rkt/rkt/pull/3182]) (#3180 [https://github.com/rkt/rkt/pull/3180]) (#3166 [https://github.com/rkt/rkt/pull/3166])

	proposals/app-level-api: add rkt app sandbox subcommand (#3147 [https://github.com/rkt/rkt/pull/3147]). This adds a new subcommand app init to create an initial empty pod.

1.14.0

This release updates the coreos and kvm flavors, bringing in a newer stable systemd (v231). Several fixes and cgroups-related changes landed in api-service, and better heuristics have been introduced to avoid using overlays in non-supported environments. Finally, run-prepared now honors options for insecure/privileged pods too.

New features and UX changes

	stage1: update to CoreOS 1151.0.0 and systemd v231 (#3122 [https://github.com/rkt/rkt/pull/3122]).

	common: fall back to non-overlay with ftype=0 (#3105 [https://github.com/rkt/rkt/pull/3105]).

	rkt: honor insecure-options in run-prepared (#3138 [https://github.com/rkt/rkt/pull/3138]).

Bug fixes

	stage0: fix golint warnings (#3099 [https://github.com/rkt/rkt/pull/3099]).

	rkt: avoid possible panic in api-server (#3111 [https://github.com/rkt/rkt/pull/3111]).

	rkt/run: allow –set-env-file files with comments (#3115 [https://github.com/rkt/rkt/pull/3115]).

	scripts/install-rkt: add wget as dependency (#3124 [https://github.com/rkt/rkt/pull/3124]).

	install-rkt.sh: scripts: Fix missing files in .deb when using install-rkt.sh (#3127 [https://github.com/rkt/rkt/pull/3127]).

	tests: check for run-prepared with insecure options (#3139 [https://github.com/rkt/rkt/pull/3139]).

Other changes

	seccomp/docker: update docker whitelist to include mlock (#3126 [https://github.com/rkt/rkt/pull/3126]). This updates the @docker/default-whitelist to include mlock-related
syscalls (mlock, mlock2, mlockall).

	build: add PowerPC (#2936 [https://github.com/rkt/rkt/pull/2936]).

	scripts: install-rkt.sh: fail install-pak on errors (#3150 [https://github.com/rkt/rkt/pull/3150]). When install-pak (called from install-rkt.sh) fails at some point
abort packaging.

	api_service: Rework cgroup detection (#3072 [https://github.com/rkt/rkt/pull/3072]). Use the subcgroup file hint provided by some stage1s rather than
machined registration.

	Documentation/devel: add make images target (#3142 [https://github.com/rkt/rkt/pull/3142]). This introduces the possibility to generate graphivz based PNG images using
a new images make target.

	vendor: update appc/spec to 0.8.7 (#3143 [https://github.com/rkt/rkt/pull/3143]).

	stage1/kvm: avoid writing misleading subcgroup (#3107 [https://github.com/rkt/rkt/pull/3107]).

	vendor: update go-systemd to v12 (#3125 [https://github.com/rkt/rkt/pull/3125]).

	scripts: bump coreos.com/rkt/builder image version (#3092 [https://github.com/rkt/rkt/pull/3092]). This bumps rkt-builder version to 1.0.2, in order to work with
seccomp filtering.

	export: test export for multi-app pods (#3075 [https://github.com/rkt/rkt/pull/3075]).

	Documentation updates: (#3146 [https://github.com/rkt/rkt/pull/3146], #2954 [https://github.com/rkt/rkt/pull/2954], #3128 [https://github.com/rkt/rkt/pull/3128], #2953 [https://github.com/rkt/rkt/pull/2953], #3103 [https://github.com/rkt/rkt/pull/3103], #3087 [https://github.com/rkt/rkt/pull/3087], #3097 [https://github.com/rkt/rkt/pull/3097], #3096 [https://github.com/rkt/rkt/pull/3096], #3095 [https://github.com/rkt/rkt/pull/3095], #3089 [https://github.com/rkt/rkt/pull/3089])

1.13.0

This release introduces support for exporting single applications out of multi-app pods. Moreover, it adds additional support to control device manipulation inside pods. Finally all runtime security features can now be optionally disabled at the pod level via new insecure options. This version also contains multiple bugfixes and supports Go 1.7.

New features and UX changes

	export: name flag for exporting multi-app pods (#3030 [https://github.com/rkt/rkt/pull/3030]).

	stage1: limit device node creation/reading/writing with DevicePolicy= and DeviceAllow= (#3027 [https://github.com/rkt/rkt/pull/3027], #3058 [https://github.com/rkt/rkt/pull/3058]).

	rkt: implements –insecure-options={capabilities,paths,seccomp,run-all} (#2983 [https://github.com/rkt/rkt/pull/2983]).

Bug fixes

	kvm: use a properly formatted comment for iptables chains (#3038 [https://github.com/rkt/rkt/pull/3038]). rkt was using the chain name as comment, which could lead to confusion.

	pkg/label: supply mcsdir as function argument to InitLabels() (#3045 [https://github.com/rkt/rkt/pull/3045]).

	api_service: improve machined call error output (#3059 [https://github.com/rkt/rkt/pull/3059]).

	general: fix old appc/spec version in various files (#3055 [https://github.com/rkt/rkt/pull/3055]).

	rkt/pubkey: use custom http client including timeout (#3084 [https://github.com/rkt/rkt/pull/3084]).

	dist: remove quotes from rkt-api.service ExecStart (#3079 [https://github.com/rkt/rkt/pull/3079]).

	build: multiple fixes (#3042 [https://github.com/rkt/rkt/pull/3042], #3041 [https://github.com/rkt/rkt/pull/3041], #3046 [https://github.com/rkt/rkt/pull/3046]).

	configure: disable tests on host flavor with systemd <227 (#3047 [https://github.com/rkt/rkt/pull/3047]).

Other changes

	travis: add go 1.7, bump go 1.5/1.6 (#3077 [https://github.com/rkt/rkt/pull/3077]).

	api_service: Add lru cache to cache image info (#2910 [https://github.com/rkt/rkt/pull/2910]).

	scripts: add curl as build dependency (#3070 [https://github.com/rkt/rkt/pull/3070]).

	vendor: use appc/spec 0.8.6 and k8s.io/kubernetes v1.3.0 (#3063 [https://github.com/rkt/rkt/pull/3063]).

	common: use fileutil.IsExecutable() (#3023 [https://github.com/rkt/rkt/pull/3023]).

	build: Stop printing irrelevant invalidation messages (#3050 [https://github.com/rkt/rkt/pull/3050]).

	build: Make generating clean files simpler to do (#3057 [https://github.com/rkt/rkt/pull/3057]).

	Documentation: misc changes (#3053 [https://github.com/rkt/rkt/pull/3053], #2911 [https://github.com/rkt/rkt/pull/2911], #3035 [https://github.com/rkt/rkt/pull/3035], #3036 [https://github.com/rkt/rkt/pull/3036], #3037 [https://github.com/rkt/rkt/pull/3037], #2945 [https://github.com/rkt/rkt/pull/2945], #3083 [https://github.com/rkt/rkt/pull/3083], #3076 [https://github.com/rkt/rkt/pull/3076], #3033 [https://github.com/rkt/rkt/pull/3033], #3064 [https://github.com/rkt/rkt/pull/3064], #2932 [https://github.com/rkt/rkt/pull/2932]).

	functional tests: misc fixes (#3049 [https://github.com/rkt/rkt/pull/3049]).

1.12.0

This release introduces support for seccomp filtering via two new seccomp isolators. It also gives a boost to api-service performance by introducing manifest caching. Finally it fixes several regressions related to Docker images handling.

New features and UX changes

	cli: rename --cap-retain and --cap-remove to --caps-* (#2994 [https://github.com/rkt/rkt/pull/2994]).

	stage1: apply seccomp isolators (#2753 [https://github.com/rkt/rkt/pull/2753]). This introduces support for appc seccomp isolators.

	scripts: add /etc/rkt owned by group rkt-admin in setup-data-dir.sh (#2944 [https://github.com/rkt/rkt/pull/2944]).

	rkt: add --caps-retain and --caps-remove to prepare (#3007 [https://github.com/rkt/rkt/pull/3007]).

	store: allow users in the rkt group to delete images (#2961 [https://github.com/rkt/rkt/pull/2961]).

	api_service: cache pod manifest (#2891 [https://github.com/rkt/rkt/pull/2891]). Manifest caching considerably improves api-service performances.

	store: tell the user to run as root on db update (#2966 [https://github.com/rkt/rkt/pull/2966]).

	stage1: disabling cgroup namespace in systemd-nspawn (#2989 [https://github.com/rkt/rkt/pull/2989]). For more information see systemd#3589 [https://github.com/systemd/systemd/pull/3589].

	fly: copy rkt-resolv.conf in the app (#2982 [https://github.com/rkt/rkt/pull/2982]).

	store: decouple aci store and treestore implementations (#2919 [https://github.com/rkt/rkt/pull/2919]).

	store: record ACI fetching information (#2960 [https://github.com/rkt/rkt/pull/2960]).

Bug fixes

	stage1/init: fix writing of /etc/machine-id (#2977 [https://github.com/rkt/rkt/pull/2977]).

	rkt-monitor: multiple fixes (#2927 [https://github.com/rkt/rkt/pull/2927], #2988 [https://github.com/rkt/rkt/pull/2988]).

	rkt: don’t errwrap cli_apps errors (#2958 [https://github.com/rkt/rkt/pull/2958]).

	pkg/tar/chroot: avoid errwrap in function called by multicall (#2997 [https://github.com/rkt/rkt/pull/2997]).

	networking: apply CNI args to the default networks as well (#2985 [https://github.com/rkt/rkt/pull/2985]).

	trust: provide InsecureSkipTLSCheck to pubkey manager (#3016 [https://github.com/rkt/rkt/pull/3016]).

	api_service: update grpc version (#3015 [https://github.com/rkt/rkt/pull/3015]).

	fetcher: httpcaching fixes (#2965 [https://github.com/rkt/rkt/pull/2965]).

Other changes

	build,stage1/init: set interpBin at build time for src flavor (#2978 [https://github.com/rkt/rkt/pull/2978]).

	common: introduce RemoveEmptyLines() (#3004 [https://github.com/rkt/rkt/pull/3004]).

	glide: update docker2aci to v0.12.3 (#3026 [https://github.com/rkt/rkt/pull/3026]). This fixes multiple bugs in layers ordering for Docker images.

	glide: update go-systemd to v11 (#2970 [https://github.com/rkt/rkt/pull/2970]). This fixes a buggy corner-case in journal seeking (implicit seek to head).

	docs: document capabilities overriding (#2917 [https://github.com/rkt/rkt/pull/2917], #2991 [https://github.com/rkt/rkt/pull/2991]).

	issue template: add ‘\n’ to the end of environment output (#3008 [https://github.com/rkt/rkt/pull/3008]).

	functional tests: multiple fixes (#2999 [https://github.com/rkt/rkt/pull/2999], #2979 [https://github.com/rkt/rkt/pull/2979], #3014 [https://github.com/rkt/rkt/pull/3014]).

1.11.0

This release sets the ground for the new upcoming KVM qemu flavor. It adds support for exporting a pod to an ACI including all modifications. The rkt API service now also supports systemd socket activation. Finally we have diagnostics back, helping users to find out why their app failed to execute.

New features

	KVM: Hypervisor support for KVM flavor focusing on qemu (#2684 [https://github.com/rkt/rkt/pull/2684]). This provides a generic mechanism to use different kvm hypervisors (such as lkvm, qemu-kvm).

	rkt: add command to export a pod to an aci (#2889 [https://github.com/rkt/rkt/pull/2889]). Adds a new export command to rkt which generates an ACI from a pod; saving any changes made to the pod.

	rkt/api: detect when run as a systemd.socket(5) service (#2916 [https://github.com/rkt/rkt/pull/2916]). This allows rkt to run as a systemd socket-based unit.

	rkt/stop: implement --uuid-file (#2902 [https://github.com/rkt/rkt/pull/2902]). So the user can use the value saved on rkt run with --uuid-file-save.

Bug fixes

	scripts/glide-update: ensure running from $GOPATH (#2885 [https://github.com/rkt/rkt/pull/2885]). glide is confused when it’s not running with the rkt repository inside $GOPATH.

	store: fix missing shared storelock acquisition on NewStore (#2896 [https://github.com/rkt/rkt/pull/2896]).

	store,rkt: fix fd leaks (#2906 [https://github.com/rkt/rkt/pull/2906]). Close db lock on store close. If we don’t do it, there’s a fd leak everytime we open a new Store, even if it was closed.

	stage1/enterexec: remove trailing \n in environment variables (#2901 [https://github.com/rkt/rkt/pull/2901]). Loading environment retained the new line character (\n), this produced an incorrect evaluation of the environment variables.

	stage1/gc: skip cleaning our own cgroup (#2914 [https://github.com/rkt/rkt/pull/2914]).

	api_service/log: fix file descriptor leak in GetLogs() (#2930 [https://github.com/rkt/rkt/pull/2930]).

	protobuf: fix protoc-gen-go build with vendoring (#2913 [https://github.com/rkt/rkt/pull/2913]).

	build: fix x86 builds (#2926 [https://github.com/rkt/rkt/pull/2926]). This PR fixes a minor issue which leads to x86 builds failing.

	functional tests: add some more volume/mount tests (#2903 [https://github.com/rkt/rkt/pull/2903]).

	stage1/init: link pod’s journal in kvm flavor (#2934 [https://github.com/rkt/rkt/pull/2934]). In nspawn flavors, nspawn creates a symlink from /var/log/journal/${machine-id} to the pod’s journal directory. In kvm we need to do the link ourselves.

	build: Build system fixes (#2938 [https://github.com/rkt/rkt/pull/2938]). This should fix the expr: syntax error and useless rebuilds of network plugins.

Other changes

	stage1: diagnostic functionality for rkt run (#2872 [https://github.com/rkt/rkt/pull/2872]). If the app exits with ExecMainStatus == 203, the app’s reaper runs the diagnostic tool and prints the output on stdout. systemd sets ExecMainstatus to EXIT_EXEC (203) when execve() fails.

	build: add support for more architectures at configure time (#2907 [https://github.com/rkt/rkt/pull/2907]).

	stage1: update coreos image to 1097.0.0 (#2884 [https://github.com/rkt/rkt/pull/2884]). This is needed for a recent enough version of libseccomp (2.3.0), with support for new syscalls (eg. getrandom).

	api: By adding labels to the image itself, we don’t need to pass the manifest to filter function (#2909 [https://github.com/rkt/rkt/pull/2909]). api: Add labels to pod and image type.

	api: optionally build systemd-journal support (#2868 [https://github.com/rkt/rkt/pull/2868]). This introduces a ‘sdjournal’ tag and corresponding stubs in api_service, turning libsystemd headers into a soft-dependency.

	store: simplify db locking and functions (#2897 [https://github.com/rkt/rkt/pull/2897]). Instead of having a file lock to handle inter process locking and a sync.Mutex to handle locking between multiple goroutines, just create, lock and close a new file lock at every db.Do function.

	stage1/enterexec: Add entry to ASSCB_EXTRA_HEADERS (#2924 [https://github.com/rkt/rkt/pull/2924]). Added entry to ASSCB_EXTRA_HEADERS for better change tracking.

	build: use rkt-builder ACI (#2923 [https://github.com/rkt/rkt/pull/2923]).

	Add hidden ‘image fetch’ next to the existing ‘fetch’ option (#2860 [https://github.com/rkt/rkt/pull/2860]).

	stage1: prepare-app: don’t mount /sys if path already used (#2888 [https://github.com/rkt/rkt/pull/2888]). When users mount /sys or a sub-directory of /sys as a volume, prepare-app should not mount /sys: that would mask the volume provided by users.

	build,stage1/init: set interpBin at build time to fix other architecture builds (e.g. x86) (#2950 [https://github.com/rkt/rkt/pull/2950]).

	functional tests: re-purpose aws.sh for generating AMIs (#2736 [https://github.com/rkt/rkt/pull/2736]).

	rkt: Add --cpuprofile --memprofile for profiling rkt (#2887 [https://github.com/rkt/rkt/pull/2887]). Adds two hidden global flags and documentation to enable profiling rkt.

	functional test: check PATH variable for trailer \n character (#2942 [https://github.com/rkt/rkt/pull/2942]).

	functional tests: disable TestVolumeSysfs on kvm (#2941 [https://github.com/rkt/rkt/pull/2941]).

	Documentation updates (#2918 [https://github.com/rkt/rkt/pull/2918])

Library updates

	glide: update docker2aci to v0.12.1 (#2873 [https://github.com/rkt/rkt/pull/2873]). Includes support for the docker image format v2.2 and OCI image format and allows fetching via digest.

1.10.1

This is a minor bug fix release.

Bug fixes

	rkt/run: handle malformed environment files (#2901 [https://github.com/rkt/rkt/pull/2901])

	stage1/enterexec: remove trailing \n in environment variables (#2901 [https://github.com/rkt/rkt/pull/2901])

v1.10.0

This release introduces a number of important features and improvements:

	ARM64 support

	A new subcommand rkt stop to gracefully stop running pods

	native Go vendoring with Glide

	rkt is now packaged for openSUSE Tumbleweed and Leap

New features

	Add ARM64 support (#2758 [https://github.com/rkt/rkt/pull/2758]). This enables ARM64 cross-compliation, fly, and stage1-coreos.

	Replace Godep with Glide, introduce native Go vendoring (#2735 [https://github.com/rkt/rkt/pull/2735]).

	rkt: rkt stop (#2438 [https://github.com/rkt/rkt/pull/2438]). Cleanly stops a running pod. For systemd-nspawn, sends a SIGTERM. For kvm, executes systemctl halt.

Bug fixes

	stage1/fly: respect runtimeApp App’s MountPoints (#2852 [https://github.com/rkt/rkt/pull/2852]). Fixes #2846.

	run: fix sandbox-side metadata service to comply to appc v0.8.1 (#2863 [https://github.com/rkt/rkt/pull/2863]). Fixes #2621.

Other changes

	build directory layout change (#2758 [https://github.com/rkt/rkt/pull/2758]): The rkt binary and stage1 image files have been moved from the ‘bin’ sub-directory to the ‘target/bin’ sub-directory.

	networking/kvm: add flannel default gateway parsing (#2859 [https://github.com/rkt/rkt/pull/2859]).

	stage1/enterexec: environment file with ‘\n’ as separator (systemd style) (#2839 [https://github.com/rkt/rkt/pull/2839]).

	pkg/tar: ignore global extended headers (#2847 [https://github.com/rkt/rkt/pull/2847]).

	pkg/tar: remove errwrap (#2848 [https://github.com/rkt/rkt/pull/2848]).

	tests: fix abuses of appc types.Isolator (#2840 [https://github.com/rkt/rkt/pull/2840]).

	common: remove unused GetImageIDs() (#2834 [https://github.com/rkt/rkt/pull/2834]).

	common/cgroup: add mountFsRO() helper function (#2829 [https://github.com/rkt/rkt/pull/2829]).

	Documentation updates (#2732 [https://github.com/rkt/rkt/pull/2732], #2869 [https://github.com/rkt/rkt/pull/2869], #2810 [https://github.com/rkt/rkt/pull/2810], #2865 [https://github.com/rkt/rkt/pull/2865], #2825 [https://github.com/rkt/rkt/pull/2825], #2841 [https://github.com/rkt/rkt/pull/2841], #2732 [https://github.com/rkt/rkt/pull/2732])

Library updates

	glide: bump ql to v1.0.4 (#2875 [https://github.com/rkt/rkt/pull/2875]). It fixes an occassional panic when doing GC.

	glide: bump gopsutils to 2.1 (#2876 [https://github.com/rkt/rkt/pull/2876]). To include https://github.com/shirou/gopsutil/pull/194 (this adds ARM aarch64 support)

	vendor: update appc/spec to 0.8.5 (#2854 [https://github.com/rkt/rkt/pull/2854]).

v1.9.1

This is a minor bug fix release.

Bug fixes

	Godeps: update go-systemd (#2837 [https://github.com/rkt/rkt/pull/2837]). go-systemd v10 fixes a panic-inducing bug due to returning incorrect
Read() length values.

	stage1/fly: use 0755 to create mountpaths (#2836 [https://github.com/rkt/rkt/pull/2836]). This will allow any user to list the content directories. It does not
have any effect on the permissions on the mounted files itself.

v1.9.0

This release focuses on bug fixes and developer tooling and UX improvements.

New features and UX changes

	rkt/run: added –set-env-file switch and priorities for environments (#2816 [https://github.com/rkt/rkt/pull/2816]). –set-env-file gets an environment variables file path in the format “VAR=VALUE\n...”.

	run: add –cap-retain and –cap-remove (#2771 [https://github.com/rkt/rkt/pull/2771]).

	store: print more information on rm as non-root (#2805 [https://github.com/rkt/rkt/pull/2805]).

	Documentation/vagrant: use rkt binary for getting started (#2808 [https://github.com/rkt/rkt/pull/2808]).

	docs: New file in documentation - instruction for new developers in rkt (#2639 [https://github.com/rkt/rkt/pull/2639]).

	stage0/trust: change error message if prefix/root flag missing (#2661 [https://github.com/rkt/rkt/pull/2661]).

Bug fixes

	rkt/uuid: fix match when uuid is an empty string (#2807 [https://github.com/rkt/rkt/pull/2807]).

	rkt/api_service: fix fly pods (#2799 [https://github.com/rkt/rkt/pull/2799]).

	api/client_example: fix panic if pod has no apps (#2766 [https://github.com/rkt/rkt/pull/2766]). Fixes the concern expressed in https://github.com/rkt/rkt/pull/2763#discussion_r66409260

	api_service: wait until a pod regs with machined (#2788 [https://github.com/rkt/rkt/pull/2788]).

Other changes

	stage1: update coreos image to 1068.0.0 (#2821 [https://github.com/rkt/rkt/pull/2821]).

	KVM: Update LKVM patch to mount with mmap mode (#2795 [https://github.com/rkt/rkt/pull/2795]).

	stage1: always write /etc/machine-id (#2440 [https://github.com/rkt/rkt/pull/2440]). Prepare rkt for systemd-v230 in stage1.

	stage1/prepare-app: always adjust /etc/hostname (#2761 [https://github.com/rkt/rkt/pull/2761]).

v1.8.0

This release focuses on stabilizing the API service, fixing multiple issues in the logging subsystem.

New features and UX changes

	api: GetLogs: improve client example with ‘Follow’ (#2747 [https://github.com/rkt/rkt/pull/2747]).

	kvm: add proxy arp support to macvtap (#2715 [https://github.com/rkt/rkt/pull/2715]).

	stage0/config: add a CLI flag to pretty print json (#2745 [https://github.com/rkt/rkt/pull/2745]).

	stage1: make /proc/bus/ read-only (#2743 [https://github.com/rkt/rkt/pull/2743]).

Bug fixes

	api: GetLogs: use the correct type in LogsStreamWriter (#2744 [https://github.com/rkt/rkt/pull/2744]).

	api: fix service panic on incomplete pods (#2739 [https://github.com/rkt/rkt/pull/2739]).

	api: Fix the GetLogs() when appname is given (#2763 [https://github.com/rkt/rkt/pull/2763]).

	pkg/selinux: various fixes (#2723 [https://github.com/rkt/rkt/pull/2723]).

	pkg/fileutil: don’t remove the cleanSrc if it equals ‘.’ (#2731 [https://github.com/rkt/rkt/pull/2731]).

	stage0: remove superfluous error verbs (#2750 [https://github.com/rkt/rkt/pull/2750]).

Other changes

	Godeps: bump go-systemd (#2754 [https://github.com/rkt/rkt/pull/2754]). Fixes a panic on the api-service when calling GetLogs().

	Documentation updates (#2756 [https://github.com/rkt/rkt/pull/2756], #2741 [https://github.com/rkt/rkt/pull/2741], #2737 [https://github.com/rkt/rkt/pull/2737], #2742 [https://github.com/rkt/rkt/pull/2742], #2730 [https://github.com/rkt/rkt/pull/2730], #2729 [https://github.com/rkt/rkt/pull/2729])

	Test improvements (#2726 [https://github.com/rkt/rkt/pull/2726]).

v1.7.0

This release introduces some new security features, including a “no-new-privileges” isolator and initial (partial) restrictions on /proc and /sys access.
Cgroups handling has also been improved with regards to setup and cleaning. Many bugfixes and new documentation are included too.

New features and UX changes

	stage1: implement no-new-privs linux isolator (#2677 [https://github.com/rkt/rkt/pull/2677]).

	stage0: disable OverlayFS by default when working on ZFS (#2600 [https://github.com/rkt/rkt/pull/2600]).

	stage1: (partially) restrict access to procfs and sysfs paths (#2683 [https://github.com/rkt/rkt/pull/2683]).

	stage1: clean up pod cgroups on GC (#2655 [https://github.com/rkt/rkt/pull/2655]).

	stage1/prepare-app: don’t mount /sys/fs/cgroup in stage2 (#2681 [https://github.com/rkt/rkt/pull/2681]).

	stage0: complain and abort on conflicting CLI flags (#2666 [https://github.com/rkt/rkt/pull/2666]).

	stage1: update CoreOS image signing key (#2659 [https://github.com/rkt/rkt/pull/2659]).

	api_service: Implement GetLogs RPC request (#2662 [https://github.com/rkt/rkt/pull/2662]).

	networking: update to CNI v0.3.0 (#3696 [https://github.com/rkt/rkt/pull/2696]).

Bug fixes

	api: fix image size reporting (#2501 [https://github.com/rkt/rkt/pull/2501]).

	build: fix build failures on manpages/bash-completion target due to missing GOPATH (#2646 [https://github.com/rkt/rkt/pull/2646]).

	dist: fix “other” permissions so rkt list can work without root/rkt-admin (#2698 [https://github.com/rkt/rkt/pull/2698]).

	kvm: fix logging network plugin type (#2635 [https://github.com/rkt/rkt/pull/2635]).

	kvm: transform flannel network to allow teardown (#2647 [https://github.com/rkt/rkt/pull/2647]).

	rkt: fix panic on rm a non-existing pod with uuid-file (#2679 [https://github.com/rkt/rkt/pull/2679]).

	stage1/init: work around cgroup/SCM_CREDENTIALS race (#2645 [https://github.com/rkt/rkt/pull/2645]).

	gc: mount stage1 on GC (#2704 [https://github.com/rkt/rkt/pull/2704]).

	stage1: fix network files leak on GC (#2319 [https://github.com/rkt/rkt/issues/2319]).

Other changes

	deps: remove unused dependencies (#2703 [https://github.com/rkt/rkt/pull/2703]).

	deps: appc/spec, k8s, protobuf updates (#2697 [https://github.com/rkt/rkt/pull/2697]).

	deps: use tagged release of github.com/shirou/gopsutil (#2705 [https://github.com/rkt/rkt/pull/2705]).

	deps: bump docker2aci to v0.11.1 (#2719 [https://github.com/rkt/rkt/pull/2719]).

	Documentation updates (#2620 [https://github.com/rkt/rkt/pull/2620], #2700 [https://github.com/rkt/rkt/pull/2700], #2637 [https://github.com/rkt/rkt/pull/2637], #2591 [https://github.com/rkt/rkt/pull/2591], #2651 [https://github.com/rkt/rkt/pull/2651], #2699 [https://github.com/rkt/rkt/pull/2699], #2631 [https://github.com/rkt/rkt/pull/2631]).

	Test improvements (#2587 [https://github.com/rkt/rkt/pull/2587], #2656 [https://github.com/rkt/rkt/pull/2656], #2676 [https://github.com/rkt/rkt/pull/2676], #2554 [https://github.com/rkt/rkt/pull/2554], #2690 [https://github.com/rkt/rkt/pull/2690], #2674 [https://github.com/rkt/rkt/pull/2674], #2665 [https://github.com/rkt/rkt/pull/2665], #2649 [https://github.com/rkt/rkt/pull/2649], #2643 [https://github.com/rkt/rkt/pull/2643], #2637 [https://github.com/rkt/rkt/pull/2637], #2633 [https://github.com/rkt/rkt/pull/2633]).

v1.6.0

This release focuses on security enhancements. It provides additional isolators, creating a new mount namespace per app. Also a new version of CoreOS 1032.0.0 with systemd v229 is being used in stage1.

New features and UX changes

	stage1: implement read-only rootfs (#2624 [https://github.com/rkt/rkt/pull/2624]). Using the Pod manifest readOnlyRootFS option mounts the rootfs of the app as read-only using systemd-exec unit option ReadOnlyDirectories, see appc/spec [https://github.com/appc/spec/blob/master/spec/pods.md#pod-manifest-schema].

	stage1: capabilities: implement both remain set and remove set (#2589 [https://github.com/rkt/rkt/pull/2589]). It follows the Linux Isolators semantics from the App Container Executor spec [https://github.com/appc/spec/blob/master/spec/ace.md#linux-isolators], as modified by appc/spec#600 [https://github.com/appc/spec/pull/600].

	stage1/init: create a new mount ns for each app (#2603 [https://github.com/rkt/rkt/pull/2603]). Up to this point, you could escape the app’s chroot easily by using a simple program downloaded from the internet 1 [http://www.unixwiz.net/techtips/chroot-practices.html]. To avoid this, we now create a new mount namespace per each app.

	api: Return the pods even when we failed getting information about them (#2593 [https://github.com/rkt/rkt/pull/2593]).

	stage1/usr_from_coreos: use CoreOS 1032.0.0 with systemd v229 (#2514 [https://github.com/rkt/rkt/pull/2514]).

Bug fixes

	kvm: fix flannel network info (#2625 [https://github.com/rkt/rkt/pull/2625]). It wasn’t saving the network information on disk.

	stage1: Machine name wasn’t being populated with the full UUID (#2575 [https://github.com/rkt/rkt/pull/2575]).

	rkt: Some simple arg doc string fixes (#2588 [https://github.com/rkt/rkt/pull/2588]). Remove some unnecessary indefinite articles from the start of argument doc strings and fixes the arg doc string for run-prepared’s –interactive flag.

	stage1: Fix segfault in enterexec (#2608 [https://github.com/rkt/rkt/pull/2608]). This happened if rkt enter was executed without the TERM environment variable set.

	net: fix port forwarding behavior with custom CNI ipMasq’ed networks and allow different hostPort:podPort combinations (#2387 [https://github.com/rkt/rkt/pull/2387]).

	stage0: check and create /etc (#2599 [https://github.com/rkt/rkt/pull/2599]). Checks ‘/etc’ before writing to ‘/etc/rkt-resolv.conf’ and creates it with default permissions if it doesn’t exist.

Other changes

	godep: update cni to v0.2.3 (#2618 [https://github.com/rkt/rkt/pull/2618]).

	godep: update appc/spec to v0.8.1 (#2623 [https://github.com/rkt/rkt/pull/2623], #2611 [https://github.com/rkt/rkt/pull/2611]).

	dist: Update tmpfiles to create /etc/rkt (#2472 [https://github.com/rkt/rkt/pull/2472]). By creating this directory, users can run rkt trust without being root, if the user is in the rkt group.

	Invoke gofmt with simplify-code flag (#2489 [https://github.com/rkt/rkt/pull/2489]). Enables code simplification checks of gofmt.

	Implement composable uid/gid generators (#2510 [https://github.com/rkt/rkt/pull/2510]). This cleans up the code a bit and implements uid/gid functionality for rkt fly.

	stage1: download CoreOS over HTTPS (#2568 [https://github.com/rkt/rkt/pull/2568]).

	Documentation updates (#2555 [https://github.com/rkt/rkt/pull/2555], #2609 [https://github.com/rkt/rkt/pull/2609], #2605 [https://github.com/rkt/rkt/pull/2605], #2578 [https://github.com/rkt/rkt/pull/2578], #2614 [https://github.com/rkt/rkt/pull/2614], #2579 [https://github.com/rkt/rkt/pull/2579], #2570 [https://github.com/rkt/rkt/pull/2570]).

	Test improvements (#2613 [https://github.com/rkt/rkt/pull/2613], #2566 [https://github.com/rkt/rkt/pull/2566], #2508 [https://github.com/rkt/rkt/pull/2508]).

v1.5.1

This release is a minor bug fix release.

Bug fixes

	rkt: fix bug where rkt errored out if the default data directory didn’t exist #2557 [https://github.com/rkt/rkt/pull/2557].

	kvm: fix docker volume semantics (#2558 [https://github.com/rkt/rkt/pull/2558]). When a Docker image exposes a mount point that is not mounted by a host volume, Docker volume semantics expect the files in the directory to be available to the application. This was not working properly in the kvm flavor and it’s fixed now.

	kvm: fix net long names (#2543 [https://github.com/rkt/rkt/pull/2543]). Handle network names that are longer than the maximum allowed by iptables in the kvm flavor.

Other changes

	minor tests and clean-ups (#2551 [https://github.com/rkt/rkt/pull/2551]).

v1.5.0

This release switches to pure systemd for running apps within a pod. This lays the foundation to implement enhanced isolation capabilities. For example, starting with v1.5.0, apps are started with more restricted capabilities. User namespace support and the KVM stage1 are not experimental anymore. Resource usage can be benchmarked using the new rkt-monitor tool.

New features and UX changes

	stage1: replace appexec with pure systemd (#2493 [https://github.com/rkt/rkt/pull/2493]). Replace functionality implemented in appexec with equivalent systemd options. This allows restricting the capabilities granted to apps in a pod and makes enabling other security features (per-app mount namespaces, seccomp filters...) easier.

	stage1: restrict capabilities granted to apps (#2493 [https://github.com/rkt/rkt/pull/2493]). Apps in a pod receive now a smaller set of capabilities [https://github.com/rkt/rkt/blob/v1.5.0/stage1/init/common/pod.go#L67].

	rkt/image: render images on fetch (#2398 [https://github.com/rkt/rkt/pull/2398]). On systems with overlay fs support, rkt was delaying rendering images to the tree store until they were about to run for the first time which caused that first run to be slow for big images. When fetching as root, render the images right away so the first run is faster.

Bug fixes

	kvm: fix mounts regression (#2530 [https://github.com/rkt/rkt/pull/2530]). Cause - AppRootfsPath called with local “root” value was adding
stage1/rootfs twice. After this change this is made properly.

	rkt/image: strip “Authorization” on redirects to a different host (#2465 [https://github.com/rkt/rkt/pull/2465]). We now don’t pass the “Authorization” header if the redirect goes to a different host, it can leak sensitive information to unexpected third parties.

	stage1/init: interpret the string “root” as UID/GID 0 (#2458 [https://github.com/rkt/rkt/pull/2458]). This is a special case and it should work even if the image doesn’t have /etc/passwd or /etc/group.

Improved documentation

	added benchmarks folder, benchmarks for v1.4.0 (#2520 [https://github.com/rkt/rkt/pull/2520]). Added the Documentation/benchmarks folder which includes a README that describes how rkt-monitor works and how to use it, and a file detailing the results of running rkt-monitor on each current workload with rkt v1.4.0.

	minor documentation fixes (#2455 [https://github.com/rkt/rkt/pull/2455], #2528 [https://github.com/rkt/rkt/pull/2528], #2511 [https://github.com/rkt/rkt/pull/2511]).

Testing

	kvm: enable functional tests for kvm (#2007 [https://github.com/rkt/rkt/pull/2007]). This includes initial support for running functional tests on the kvm flavor.

Other changes

	benchmarks: added rkt-monitor benchmarks (#2324 [https://github.com/rkt/rkt/pull/2324]). This includes the code for a golang binary that can start rkt and watch its resource usage and bash scripts for generating a handful of test scenarios.

	scripts: generate a Debian Sid ACI instead of using the Docker hub image (#2471 [https://github.com/rkt/rkt/pull/2471]). This is the first step to having an official release builder.

	pkg/sys: add SYS_SYNCFS definition for ppc64/ppc64le (#2443 [https://github.com/rkt/rkt/pull/2443]). Added missing SYS_SYNCFS definition for ppc64 and ppc64le, fixing build failures on those architectures.

	userns: not experimental anymore (#2486 [https://github.com/rkt/rkt/pull/2486]). Although it requires doing a recursive chown for each app, user namespaces work fine and shouldn’t be marked as experimental.

	kvm: not experimental anymore (#2485 [https://github.com/rkt/rkt/pull/2485]). The kvm flavor was initially introduced in rkt v0.8.0, no reason to mark it as experimental.

v1.4.0

This release includes a number of new features and bugfixes like a new config subcommand, man page, and bash completion generation during build time.

New features and UX changes

	config: add config subcommand (#2405 [https://github.com/rkt/rkt/pull/2405]). This new subcommand prints the current rkt configuration. It can be used to get i.e. authentication credentials. See rkt’s config subcommand [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/config.md] documentation.

	run: add --user/--group app flags to rkt run and rkt prepare allowing to override the user and group specified in the image manifest (#2419 [https://github.com/rkt/rkt/pull/2419]).

	gc: Add flag ‘mark-only’ to mark garbage pods without deleting them (#2400 [https://github.com/rkt/rkt/pull/2400], #2402 [https://github.com/rkt/rkt/pull/2402]). This new flag moves exited/aborted pods to the exited-garbage/garbage directory but does not delete them. A third party application can use rkt gc --mark-only=true to mark exited pods as garbage without deleting them.

	kvm: Add support for app capabilities limitation (#2222 [https://github.com/rkt/rkt/pull/2222]). By default kvm flavor has got enabled every capability inside pod. This patch adds support for a restricted set of capabilities inside a kvm flavor of rkt.

	stage1/init: return exit code 1 on error (#2383 [https://github.com/rkt/rkt/pull/2383]). On error, stage1/init was returning a non-zero value between 1 and 7. This change makes it return status code 1 only.

	api: Add ‘CreatedAt’, ‘StartedAt’ in pod’s info returned by api service. (#2377 [https://github.com/rkt/rkt/pull/2377]).

Improved documentation

	Minor documentation fixes (#2413 [https://github.com/rkt/rkt/pull/2413], #2395 [https://github.com/rkt/rkt/pull/2395], #2231 [https://github.com/rkt/rkt/pull/2231]).

	functional tests: Add new test with systemd-proxyd (#2257 [https://github.com/rkt/rkt/pull/2257]). Adds a new test and documentation how to use systemd-proxyd with rkt pods.

Bug fixes

	kvm: refactor volumes support (#2328 [https://github.com/rkt/rkt/pull/2328]). This allows users to share regular files as volumes in addition to directories.

	kvm: fix rkt status (#2415 [https://github.com/rkt/rkt/pull/2415]). Fixes a regression bug were rkt status was no longer reporting the pid of the pod when using the kvm flavor.

	Build actool for the build architecture (#2372 [https://github.com/rkt/rkt/pull/2372]). Fixes a cross compilation issue with acbuild.

	rkt: calculate real dataDir path (#2399 [https://github.com/rkt/rkt/pull/2399]). Fixes garbage collection when the data directory specified by --dir contains a symlink component.

	stage1/init: fix docker volume semantics (#2409 [https://github.com/rkt/rkt/pull/2409]). Fixes a bug in docker volume semantics when rkt runs with the option --pod-manifest. When a Docker image exposes a mount point that is not mounted by a host volume, Docker volume semantics expect the files in the directory to be available to the application. This was partially fixed in rkt 1.3.0 via #2315 [https://github.com/rkt/rkt/pull/2315] but the bug remained when rkt runs with the option --pod-manifest. This is now fully fixed.

	rkt/image: check that discovery labels match manifest labels (#2311 [https://github.com/rkt/rkt/pull/2311]).

	store: fix multi process with multi goroutines race on db (#2391 [https://github.com/rkt/rkt/pull/2391]). This was a bug when multiple rkt fetch commands were executed concurrently.

	kvm: fix pid vs ppid usage (#2396 [https://github.com/rkt/rkt/pull/2396]). Fixes a bug in rkt enter in the kvm flavor causing an infinite loop.

	kvm: Fix connectivity issue in macvtap networks caused by macvlan NICs having incorrect names (#2181 [https://github.com/rkt/rkt/pull/2181]).

	tests: TestRktListCreatedStarted: fix timing issue causing the test to fail on slow machines (#2366 [https://github.com/rkt/rkt/pull/2366]).

	rkt/image: remove redundant quotes in an error message (#2379 [https://github.com/rkt/rkt/pull/2379]).

	prepare: Support ‘ondisk’ verification skip as documented by the global options [https://github.com/rkt/rkt/blob/master/Documentation/commands.md#global-options] (#2376 [https://github.com/rkt/rkt/pull/2376]). Prior to this commit, rkt prepare would check the ondisk image even if the --insecure-options=ondisk flag was provided. This corrects that.

Other changes

	tests: skip TestSocketProxyd when systemd-socket-proxyd is not installed (#2436 [https://github.com/rkt/rkt/pull/2436]).

	tests: TestDockerVolumeSemantics: more tests with symlinks (#2394 [https://github.com/rkt/rkt/pull/2394]).

	rkt: Improve build shell script used in continuous integration [https://github.com/rkt/rkt/blob/master/tests/README.md] (#2394 [https://github.com/rkt/rkt/pull/2394]).

	protobuf: generate code using a script (#2382 [https://github.com/rkt/rkt/pull/2382]).

	Generate manpages (#2373 [https://github.com/rkt/rkt/pull/2373]). This adds support for generating rkt man pages using make manpages and the bash completion file using make bash-completion, see the note for packagers below.

	tests/aws.sh: add test for Fedora 24 (#2340 [https://github.com/rkt/rkt/pull/2340]).

Note for packagers

Files generated from sources are no longer checked-in the git repository. Instead, packagers should build them:

	Bash completion file, generated by make bash-completion

	Man pages, generated by make manpages

v1.3.0

This release includes a number of new features and bugfixes like the long-awaited propagation of apps’ exit status.

New features and UX changes

	Propagate exit status from apps inside the pod to rkt (#2308 [https://github.com/rkt/rkt/pull/2308]). Previously, if an app exited with a non-zero exit status, rkt’s exit status would still be 0. Now, if an app fails, its exit status will be propagated to the outside. While this was partially implemented in some stage1 flavors since rkt v1.1.0, it now works in the default coreos flavor.

	Check signatures for stage1 images by default, especially useful when stage1 images are downloaded from the Internet (#2336 [https://github.com/rkt/rkt/pull/2336]).
This doesn’t affect the following cases:
	The stage1 image is already in the store

	The stage1 image is in the default directory configured at build time

	The stage1 image is the default one and it is in the same directory as the rkt binary

	Allow downloading of insecure public keys with the pubkey insecure option (#2278 [https://github.com/rkt/rkt/pull/2278]).

	Implement Docker volume semantics (#2315 [https://github.com/rkt/rkt/pull/2315]). Docker volumes are initialized with the files in the image if they exist, unless a host directory is mounted there. Implement that behavior in rkt when it runs a Docker converted image.

API service

	Return the cgroup when getting information about running pods and add a new cgroup filter (#2331 [https://github.com/rkt/rkt/pull/2331]).

Bug fixes

	Avoid configuring more CPUs than the host has in the kvm flavor (#2321 [https://github.com/rkt/rkt/pull/2321]).

	Fix a bug where the proxy configuration wasn’t forwarded to docker2aci (docker2aci#147 [https://github.com/appc/docker2aci/pull/147]).

Notes

	This release drops support for go1.4.

v1.2.1

This release fixes a couple of bugs we missed in 1.2.0.

Bug fixes

	Do not error out if /dev/ptmx or /dev/log exist (#2302 [https://github.com/rkt/rkt/pull/2302]).

	Vendor a release of go-systemd instead of current master (#2306 [https://github.com/rkt/rkt/pull/2306]).

v1.2.0

This release is an incremental release with numerous bug fixes.

New features and UX changes

	Add --hostname option to rkt run/run-prepared (#2251 [https://github.com/rkt/rkt/pull/2251]). This option allows setting the pod host name.

Bug fixes

	Fix deadlock while exiting a lkvm rkt pod (#2191 [https://github.com/rkt/rkt/pull/2191]).

	SELinux fixes preparating rkt to work on Fedora with SELinux enabled (#2247 [https://github.com/rkt/rkt/pull/2247] and #2262 [https://github.com/rkt/rkt/pull/2262]).

	Fix bug that occurs for some types of on-disk image corruption, making it impossible for the user run or garbage collect them (#2180 [https://github.com/rkt/rkt/issues/2180]).

	Fix authentication issue when fetching from a private quay.io repository (#2248 [https://github.com/rkt/rkt/issues/2248]).

	Allow concurrent image fetching (#2239 [https://github.com/rkt/rkt/pull/2239]).

	Fix issue mounting volumes on images if the target path includes an absolute symlink (#2290 [https://github.com/rkt/rkt/pull/2290]).

	Clean up dangling symlinks in /var/log/journal on garbage collection if running on systemd hosts (#2289 [https://github.com/rkt/rkt/pull/2289]).

Note for 3rd party stage1 builders

	The stage1 command line interface is versioned now. See the implementors guide [https://github.com/rkt/rkt/blob/master/Documentation/devel/stage1-implementors-guide.md] for more information.

v1.1.0

This release is the first incremental release since 1.0. It includes bugfixes and some UX improvements.

New features and UX changes

	Add support for non-numerical UID/GID as specified in the appc spec (#2159 [https://github.com/rkt/rkt/pull/2159]). rkt can now start apps as the user and group specified in the image manifest [https://github.com/appc/spec/blob/master/spec/aci.md#image-manifest-schema] with three different possible formats: a numeric UID/GID, a username and group name referring to the ACI’s /etc/passwd and /etc/group, or a file path in the ACI whose owner will determine the UID/GID.

	When an application terminates with a non-zero exit status, rkt run should return that exit status (#2198 [https://github.com/rkt/rkt/pull/2198]). This is now fixed in the src and host flavors [https://github.com/rkt/rkt/blob/master/Documentation/build-configure.md#–with-stage1-flavors] with systemd >= v227 [https://lists.freedesktop.org/archives/systemd-devel/2015-October/034509.html] but not yet in the shipped coreos flavor.

	Use exit status 2 to report usage errors (#2149 [https://github.com/rkt/rkt/pull/2149]).

	Add support for tuning pod’s network via the CNI tuning plugin [https://github.com/appc/cni/blob/master/Documentation/tuning.md] (#2140 [https://github.com/rkt/rkt/pull/2140]). For example, this allows increasing the size of the listen queue for accepting new TCP connections (net.core.somaxconn) in the rkt pod.

	Keep $TERM from the host when entering a pod (#1962 [https://github.com/rkt/rkt/pull/1962]). This fixes the command “clear” which previously was not working.

Bug fixes

	Socket activation was not working if the port on the host is different from the app port as set in the image manifest (#2137 [https://github.com/rkt/rkt/pull/2137]).

	Fix an authentication failure when fetching images from private repositories in the official Docker registry (#2197 [https://github.com/rkt/rkt/pull/2197]).

	Set /etc/hostname in kvm pods (#2190 [https://github.com/rkt/rkt/pull/2190]).

v1.0.0

This marks the first release of rkt recommended for use in production.
The command-line UX and on-disk format are considered stable and safe to develop against.
Any changes to these interfaces will be backwards compatible and subject to formal deprecation.
The API is not yet completely stabilized, but is functional and suitable for use by early adopters.

New features and UX changes

	Add pod creation and start times to rkt list and rkt status (#2030 [https://github.com/rkt/rkt/pull/2030]). See rkt list [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/list.md] and rkt status [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/status.md] documentation.

	The DNS configuration can now be passed to the pod via the command line (#2040 [https://github.com/rkt/rkt/pull/2040]). See DNS support [https://github.com/rkt/rkt/blob/master/Documentation/networking.md#dns-support] documentation.

	Errors are now structured, allowing for better control of the output (#1937 [https://github.com/rkt/rkt/pull/1937]). See Error & Output [https://github.com/rkt/rkt/blob/master/Documentation/hacking.md#errors–output] for how a developer should use it.

	All output now uses the new log package in pkg/log to provide a more clean and consistent output format and more helpful debug output (#1937 [https://github.com/rkt/rkt/pull/1937]).

	Added configuration for stage1 image. Users can drop a configuration file to /etc/rkt/stage1.d (or to stage1.d in the user configuration directory) to tell rkt to use a different stage1 image name, version and location instead of build-time defaults (#1977 [https://github.com/rkt/rkt/pull/1977]).

	Replaced the --stage1-image flag with a new set of flags. --stage1-url, --stage-path, --stage1-name do the usual fetching from remote if the image does not exist in the store. --stage1-hash takes the stage1 image directly from the store. --stage1-from-dir works together with the default stage1 images directory and is described in the next point (#1977 [https://github.com/rkt/rkt/pull/1977]).

	Added default stage1 images directory. User can use the newly added --stage1-from-dir parameter to avoid typing the full path. --stage1-from-dir behaves like --stage1-path (#1977 [https://github.com/rkt/rkt/pull/1977]).

	Removed the deprecated --insecure-skip-verify flag (#2068 [https://github.com/rkt/rkt/pull/2068]).

	Fetched keys are no longer automatically trusted by default, unless --trust-keys-from-https is used. Additionally, newly fetched keys have to be explicitly trusted with rkt trust if a previous key was trusted for the same image prefix (#2033 [https://github.com/rkt/rkt/pull/2033]).

	Use NAT loopback to make ports forwarded in pods accessible from localhost (#1256 [https://github.com/rkt/rkt/issues/1256]).

	Show a clearer error message when unprivileged users execute commands that require root privileges (#2081 [https://github.com/rkt/rkt/pull/2081]).

	Add a rkt tmpfiles configuration file to make the creation of the rkt data directory on first boot easier (#2088 [https://github.com/rkt/rkt/pull/2088]).

	Remove rkt install command. It was replaced with a setup-data-dir.sh script (#2101 [https://github.com/rkt/rkt/pull/2101].

Bug fixes

	Fix regression when authenticating to v2 Docker registries (#2008 [https://github.com/rkt/rkt/issues/2008]).

	Don’t link to libacl, but dlopen it (#1963 [https://github.com/rkt/rkt/pull/1963]). This means that rkt will not crash if libacl is not present on the host, but it will just print a warning.

	Only suppress diagnostic messages, not error messages in stage1 (#2111 [https://github.com/rkt/rkt/pull/2111]).

Other changes

	Trusted Platform Module logging (TPM) is now enabled by default (#1815 [https://github.com/rkt/rkt/issues/1815]). This ensures that rkt benefits from security features by default. See rkt’s Build Configuration [https://github.com/rkt/rkt/blob/master/Documentation/build-configure.md#security] documentation.

	Added long descriptions to all rkt commands (#2098 [https://github.com/rkt/rkt/issues/2098]).

Migration

	The --stage1-image flag was removed. Scripts using it should be updated to use one of --stage1-url, --stage1-path, --stage1-name, --stage1-hash or --stage1-from-dir

	All uses of the deprecated --insecure-skip-verify flag should be replaced with the --insecure-options flag which allows user to selectively disable security features.

	The rkt install command was removed in favor of the dist/scripts/setup-data-dir.sh script.

Note for packagers

With this release, rkt RPM/dpkg packages should have the following updates:

	Pass --enable-tpm=no to configure script, if rkt should not use TPM.

	Use the --with-default-stage1-images-directory configure flag, if the default is not acceptable and install the built stage1 images there.

	Distributions using systemd: install the new file dist/init/systemd/tmpfiles.d/rkt.conf in /usr/lib/tmpfiles.d/rkt.conf and then run systemd-tmpfiles --create rkt.conf. This can replace running rkt install to set the correct ownership and permissions.

v0.16.0

New features and UX changes

	Explicitly allow http connections via a new ‘http’ option to --insecure-options (#1945 [https://github.com/rkt/rkt/pull/1945]). Any data and credentials will be sent in the clear.

	When using bash, rkt commands can be auto-completed (#1955 [https://github.com/rkt/rkt/pull/1955]).

	The executables given on the command line via the --exec parameters don’t need to be absolute paths anymore (#1953 [https://github.com/rkt/rkt/pull/1953]). This change reflects an update in the appc spec since v0.7.2 [https://github.com/appc/spec/releases/tag/v0.7.2]. See rkt’s rkt run –exec [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/run.md#overriding-executable-to-launch] documentation.

	Add a --full flag to rkt fetch so it returns full hash of the image (#1976 [https://github.com/rkt/rkt/pull/1976]).

	There is a new global flag for specifying the user configuration directory, --user-config. It overrides whatever is configured in system and local configuration directories. It can be useful for specifying different credentials for fetching images without putting them in a globally visible directory like /etc/rkt. See rkt’s Global Options [https://github.com/rkt/rkt/blob/master/Documentation/commands.md#global-options] documentation (#1981 [https://github.com/rkt/rkt/pull/1981]).

	As a temporary fix, search for network plugins in the local configuration directory too (#2005 [https://github.com/rkt/rkt/pull/2005]).

	Pass the environment defined in the image manifest to the application when using the fly stage1 image (#1989 [https://github.com/rkt/rkt/pull/1989]).

Build improvements

	Fix vagrant rkt build (#1960 [https://github.com/rkt/rkt/pull/1960]).

	Switch to using unrewritten imports, this will allow rkt packages to be cleanly vendored by other projects (#2014 [https://github.com/rkt/rkt/pull/2014]).

API service

	Allow filtering images by name (#1985 [https://github.com/rkt/rkt/pull/1985]).

Bug fixes

	Fix bug where the wrong image signature was checked when using dependencies (#1991 [https://github.com/rkt/rkt/pull/1991]).

Test improvements

	A new script to run test on AWS makes it easier to test under several distributions: CentOS, Debian, Fedora, Ubuntu (#1925 [https://github.com/rkt/rkt/pull/1925]).

	The functional tests now skip user namespace tests when user namespaces do not work (#1947 [https://github.com/rkt/rkt/pull/1947]).

	Check that rkt is not built with go 1.5.{0,1,2} to make sure it’s not vulnerable to CVE-2015-8618 (#2006 [https://github.com/rkt/rkt/pull/2006]).

Other changes

	Cleanups in the kvm stage1 (#1895 [https://github.com/rkt/rkt/pull/1895]).

	Document stage1 filesystem layout for developers (#1832 [https://github.com/rkt/rkt/pull/1832]).

Note for packagers

With this release, rkt RPM/dpkg packages should have the following updates:

	Install the new file dist/bash_completion/rkt.bash in /etc/bash_completion.d/.

v0.15.0

rkt v0.15.0 is an incremental release with UX improvements, bug fixes, API service enhancements and new support for Go 1.5.

New features and UX changes

	Images can now be deleted from the store by both ID and name (#1866 [https://github.com/rkt/rkt/pull/1866]). See rkt’s rkt image rm [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/image.md#rkt-image-rm] documentation.

	The journals of rkt pods can now be accessed by members of the Unix group rkt (#1877 [https://github.com/rkt/rkt/pull/1877]). See rkt’s journalctl -M [https://github.com/rkt/rkt/blob/master/Documentation/using-rkt-with-systemd.md#journalctl–m] documentation.

Improved documentation

	Mention rkt integration in Nomad [https://github.com/rkt/rkt/blob/master/Documentation/using-rkt-with-nomad.md] (#1884 [https://github.com/rkt/rkt/pull/1884]).

	Document how to start the api service [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/api-service.md] and add a program example [https://github.com/rkt/rkt/blob/master/api/v1alpha/client_example.go] explaining how the api service can be used to integrate rkt with other programs (#1915 [https://github.com/rkt/rkt/pull/1915]).

API service

	Programs using rkt’s API service are now provided with the size of the images stored in rkt’s store (#1916 [https://github.com/rkt/rkt/pull/1916]).

	Programs using rkt’s API service are now provided with any annotations found in the image manifest [https://github.com/appc/spec/blob/master/spec/aci.md#image-manifest-schema] and pod manifest [https://github.com/appc/spec/blob/master/spec/pods.md#pod-manifest-schema] (#1924 [https://github.com/rkt/rkt/pull/1924]).

	Fix a panic in the API service by making the store database thread-safe (#1892 [https://github.com/rkt/rkt/pull/1892]) and by refactoring the API service functions to get the pod state (#1893 [https://github.com/rkt/rkt/pull/1893]).

Build improvements

	Add support for building rkt with Go 1.5, which is now the preferred version. rkt can still be built with Go 1.4 as best effort (#1907 [https://github.com/rkt/rkt/pull/1907]). As part of the move to Go 1.5, rkt now has a godep-save script to support Go 1.5 (#1857 [https://github.com/rkt/rkt/pull/1857]).

	Continuous Integration on Travis now builds with both Go 1.4.2 and Go 1.5.2. Go 1.4.3 is avoided to workaround recent problems with go vet (#1941 [https://github.com/rkt/rkt/pull/1941]).

Bug fixes

	Fix regression issue when downloading image signatures from quay.io (#1909 [https://github.com/rkt/rkt/pull/1909]).

	Properly cleanup the tap network interface that were not cleaned up in some error cases when using the kvm stage1 (#1921 [https://github.com/rkt/rkt/pull/1921]).

	Fix a bug in the 9p filesystem used by the kvm stage1 that were preventing apt-get from working propertly (#1918 [https://github.com/rkt/rkt/pull/1918]).

v0.14.0

rkt v0.14.0 brings new features like resource isolators in the kvm stage1, a new stage1 flavor called fly, bug fixes and improved documentation.
The appc spec version has been updated to v0.7.4

New features and UX changes

	The data directory that rkt uses can now be configured with a config file (#1806 [https://github.com/rkt/rkt/pull/1806]). See rkt’s paths configuration [https://github.com/rkt/rkt/blob/master/Documentation/configuration.md#rktkind-paths] documentation.

	CPU and memory resource isolators can be specified on the command line to override the limits specified in the image manifest (#1851 [https://github.com/rkt/rkt/pull/1851], #1874 [https://github.com/rkt/rkt/pull/1874]). See rkt’s overriding isolators [https://github.com/rkt/rkt/blob/master/Documentation/subcommands/run.md#overriding-isolators] documentation.

	CPU and memory resource isolators can now be used within the kvm stage1 (#1404 [https://github.com/rkt/rkt/pull/1404])

	The rkt image list command can now display the image size (#1865 [https://github.com/rkt/rkt/pull/1865]).

	A new stage1 flavor has been added: fly; and it represents the first experimental implementation of the upcoming rkt fly feature. (#1833 [https://github.com/rkt/rkt/pull/1833])

Build improvements

	It is now possible to build rkt inside rkt (#1681 [https://github.com/rkt/rkt/pull/1681]). This should improve the reproducibility of builds. This release does not use it yet but it is planned for future releases.

	Linux distribution packagers can override the version of stage1 during the build (#1821 [https://github.com/rkt/rkt/pull/1821]). This is needed for any Linux distributions that might carry distro-specific patches along the upstream release. See rkt’s documentation about building stage1 flavors [https://github.com/rkt/rkt/blob/master/Documentation/build-configure.md#–with-stage1-flavors-version-override].

	Smaller build improvements with dep generation (#1838 [https://github.com/rkt/rkt/pull/1838]), error messages on make clean (#1850 [https://github.com/rkt/rkt/pull/1850]), dependency checks in the kvm flavor (#1860 [https://github.com/rkt/rkt/pull/1860])

Bug fixes

	rkt is now able to override the application command with --exec when the application manifest didn’t specify any command (#1843 [https://github.com/rkt/rkt/pull/1843]).

	In some cases, user namespaces were not working in Linux distributions without systemd, such as Ubuntu 14.04 LTS. This is fixed by creating a unique cgroup for each pod when systemd is not used (#1844 [https://github.com/rkt/rkt/pull/1844])

	rkt’s tar package didn’t prefix the destination file correctly when using hard links in images. This was not a issue in rkt itself but was causing acbuild to misbehave (#1852 [https://github.com/rkt/rkt/pull/1852]).

	ACIs with multiple dependencies can end up depending on the same base image through multiple paths. In some of those configuration with multiple dependencies, fetching the image via image discovery was not working. This is fixed and a new test ensures it will keep working (#1822 [https://github.com/rkt/rkt/pull/1822]).

	The pod cgroups were misconfigured when systemd-devel is not installed. This was causing per-app CPU and memory isolators to be ineffective on those systems. This is now fixed but will require an additional fix for NixOS (#1873 [https://github.com/rkt/rkt/pull/1873]).

	During the garbage collection of pods (rkt gc), all mounts will be umounted even when the pod is in an inconsistent state (#1828 [https://github.com/rkt/rkt/pull/1828], #1856 [https://github.com/rkt/rkt/pull/1856])

Improved documentation

	New documentation about configure flags (#1824 [https://github.com/rkt/rkt/pull/1824]). This also includes formatting and typos fixes and updates. The examples about rkt’s configuration files are also clarified (#1847 [https://github.com/rkt/rkt/pull/1847]).

	New documentation explaining how cgroups are used by rkt [https://github.com/rkt/rkt/blob/master/Documentation/devel/cgroups.md] (#1870 [https://github.com/rkt/rkt/pull/1870]). This should make it easier for software developers to integrate rkt with monitoring software.

API service

	The API service is meant to be used by orchestration tools like Kubernetes. The performance of the API service was improved by reducing the round-trips in the ListPods and ListImages requests (#1786 [https://github.com/rkt/rkt/pull/1786]). Those requests also gained multiple filters for more flexibility (#1853 [https://github.com/rkt/rkt/pull/1853]).

v0.13.0

The primary motivation for this release is to add support for fetching images on the Docker Registry 2.0. It also includes other small improvements.

	docker2aci: support Docker Registry 2.0 (#1826 [https://github.com/rkt/rkt/pull/1826])

	always use https:// when fetching docker images (#1837 [https://github.com/rkt/rkt/pull/1837])

	stage0: add container hash data into TPM (#1775 [https://github.com/rkt/rkt/pull/1775])

	host flavor: fix systemd copying into stage1 for Debian packaging (#1811 [https://github.com/rkt/rkt/pull/1811])

	clarify network error messages (#1707 [https://github.com/rkt/rkt/pull/1707])

	documentation: add more build-time requirements (#1834 [https://github.com/rkt/rkt/pull/1834])

v0.12.0

rkt v0.12.0 is an incremental release with UX improvements like fine-grained security controls and implicit generation of empty volumes, performance improvements, bug fixes and testing enhancements.

New features and UX changes

	implement rkt cat-manifest for pods (#1744 [https://github.com/rkt/rkt/pull/1744])

	generate an empty volume if a required one is not provided (#1753 [https://github.com/rkt/rkt/pull/1753])

	make disabling security features granular; --insecure-skip-verify is now --insecure-options={feature(s)-to-disable} (#1738 [https://github.com/rkt/rkt/pull/1738]). See rkt’s Global Options [https://github.com/rkt/rkt/blob/master/Documentation/commands.md#global-options] documentation.

	allow skipping the on-disk integrity check using --insecure-options=ondisk. This greatly speeds up start time. (#1804 [https://github.com/rkt/rkt/pull/1804])

	set empty volumes’ permissions following the spec [https://github.com/appc/spec/blob/master/spec/pods.md#pod-manifest-schema] (1803 [https://github.com/rkt/rkt/pull/1803])

	flannel networking support in kvm flavor (#1563 [https://github.com/rkt/rkt/pull/1563])

Bug fixes

	store used MCS contexts on the filesystem (#1742 [https://github.com/rkt/rkt/pull/1742])

	fix Docker images with whiteout-ed hard links (#1653 [https://github.com/rkt/rkt/pull/1653])

	fix Docker images relying on /dev/stdout (#1617 [https://github.com/rkt/rkt/pull/1617])

	use authentication for discovery and trust (#1801 [https://github.com/rkt/rkt/pull/1801])

	fix build in Docker (#1798 [https://github.com/rkt/rkt/pull/1798])

	fix kvm networking (#1530 [https://github.com/rkt/rkt/pull/1530])

Improved testing

	add functional tests for rkt api service (#1761 [https://github.com/rkt/rkt/pull/1761])

	fix TestSocketActivation on systemd-v219 (#1768 [https://github.com/rkt/rkt/pull/1768])

	fix the ACE validator test (#1802 [https://github.com/rkt/rkt/pull/1802])

Other changes

	Bumped appc spec to 0.7.3 (#1800 [https://github.com/rkt/rkt/pull/1800])

v0.11.0

rkt v0.11.0 is an incremental release with mostly bug fixes and testing improvements.

New features and UX changes

	support resuming ACI downloads (#1444 [https://github.com/rkt/rkt/pull/1444])

	rkt image gc now also removes images from the store (#1697 [https://github.com/rkt/rkt/pull/1697])

Build

	handle building multiple flavors (#1683 [https://github.com/rkt/rkt/pull/1683])

	verbosity control (#1685 [https://github.com/rkt/rkt/pull/1685], #1686 [https://github.com/rkt/rkt/pull/1686])

	fix bugs in make clean (#1695 [https://github.com/rkt/rkt/pull/1695])

Improved testing

	nicer output in tests (#1698 [https://github.com/rkt/rkt/pull/1698])

	refactor test code (#1709 [https://github.com/rkt/rkt/pull/1709])

	skip CI tests when the source was not modified (#1619 [https://github.com/rkt/rkt/pull/1619])

	better output when tests fail (#1728 [https://github.com/rkt/rkt/pull/1728])

	fix tests in 10.* IP range (#1736 [https://github.com/rkt/rkt/pull/1736])

	document how to run functional tests (#1736 [https://github.com/rkt/rkt/pull/1736])

Improved documentation

	add some help on how to run rkt as a daemon (#1684 [https://github.com/rkt/rkt/pull/1684])

API service

	do not return manifest in ListPods() and ListImages() (#1688 [https://github.com/rkt/rkt/pull/1688])

Bug fixes

	parameter --mount fixed in kvm flavour (#1687 [https://github.com/rkt/rkt/pull/1687])

	fix rkt leaking containers in machinectl on CoreOS (#1694 [https://github.com/rkt/rkt/pull/1694], #1704 [https://github.com/rkt/rkt/pull/1704])

	rkt status now returns the stage1 pid (#1699 [https://github.com/rkt/rkt/pull/1699])

	fix crash in rkt status when an image is removed (#1701 [https://github.com/rkt/rkt/pull/1701])

	fix fd leak in store (#1716 [https://github.com/rkt/rkt/pull/1716])

	fix exec line parsing in ACI manifest (#1652 [https://github.com/rkt/rkt/pull/1652])

	fix build on 32-bit systems (#1729 [https://github.com/rkt/rkt/pull/1729])

v0.10.0

rkt v0.10.0 is an incremental release with numerous bug fixes and a few small new features and UX improvements.

New features and UX changes

	added implementation for basic API service (rkt api-service) (#1508 [https://github.com/rkt/rkt/pull/1508])

	mount arbitrary volumes with --mount (#1582 [https://github.com/rkt/rkt/pull/1582], #1678 [https://github.com/rkt/rkt/pull/1678])

	--net=none only exposes the loopback interface (#1635 [https://github.com/rkt/rkt/pull/1635])

	better formatting for rkt help (#1597 [https://github.com/rkt/rkt/pull/1597])

	metadata service registration (--mds-register) disabled by default (#1635 [https://github.com/rkt/rkt/pull/1635])

Improved documentation

	compare rkt and other projects [https://github.com/rkt/rkt/blob/master/Documentation/rkt-vs-other-projects.md] (#1588 [https://github.com/rkt/rkt/pull/1588])

	Stage1 systemd Architecture [https://github.com/rkt/rkt/blob/master/Documentation/devel/architecture.md] (#1631 [https://github.com/rkt/rkt/pull/1631])

	packaging rkt in Linux distributions [https://github.com/rkt/rkt/blob/master/Documentation/packaging.md] (#1511 [https://github.com/rkt/rkt/pull/1511])

Improved testing

	new test for user namespaces (--private-users) (#1580 [https://github.com/rkt/rkt/pull/1580])

	fix races in tests (#1608 [https://github.com/rkt/rkt/pull/1608])

Bug fixes

	suppress unnecessary output when --debug is not used (#1557 [https://github.com/rkt/rkt/pull/1557])

	fix permission of rootfs with overlayfs (#1607 [https://github.com/rkt/rkt/pull/1607])

	allow relative path in parameters (#1615 [https://github.com/rkt/rkt/pull/1615])

	fix pod garbage collection failure in some cases (#1621 [https://github.com/rkt/rkt/pull/1621])

	fix rkt list when an image was removed (#1655 [https://github.com/rkt/rkt/pull/1655])

	user namespace (--private-users) regression with rkt group fixed (#1654)

v0.9.0

rkt v0.9.0 is a significant milestone release with a number of internal and user-facing changes.

There are several notable breaking changes from the previous release:

	The on-disk format for pod trees has changed slightly, meaning that rkt gc and rkt run-prepared may not work for pods created by previous versions of rkt. To work around this, we recommend removing the pods with an older version of rkt.

	The --private-net flag has been renamed to --net and its semantic has changed (in particular, it is now enabled by default) - see below for details.

	Several changes to CLI output (e.g. column names) from the rkt list and rkt image list subcommands.

	The image fetching behaviour has changed, with the introduction of new flags to rkt run and rkt fetch and the removal of --local - see below for details.

New features and UX changes

--private-net –> --net, and networking is now private by default

The --private-net flag has been changed to --net, and has been now made the default behaviour. (#1532 [https://github.com/rkt/rkt/pull/1532], #1418 [https://github.com/rkt/rkt/pull/1418])
That is, a rkt run command will now by default set up a private network for the pod.
To achieve the previous default behaviour of the pod sharing the networking namespace of the host, use --net=host.
The flag still allows the specification of multiple networks via CNI plugins, and overriding plugin configuration on a per-network basis.
For more details, see the networking documentation.

New image fetching behaviour

When fetching images during rkt fetch or rkt run, rkt would previously behave inconsistently for different formats (e.g when performing discovery or when retrieving a Docker image) when deciding whether to use a cached version or not.
rkt run featured a --local flag to adjust this behaviour but it provided an unintuitive semantic and was not available to the rkt fetch command.
Instead, rkt now features two new flags, --store-only and --no-store, on both the rkt fetch and rkt run commands, to provide more consistent, controllable, and predictable behaviour regarding when images should be retrieved.
For full details of the new behaviour see the image fetching documentation.

Unprivileged users

A number of changes were made to the permissions of rkt’s internal store to facilitate unprivileged users to access information about images and pods on the system (#1542 [https://github.com/rkt/rkt/pull/1542], #1569 [https://github.com/rkt/rkt/pull/1569]).
In particular, the set-group-ID bit is applied to the directories touched by rkt install so that the rkt group (if it exists on the system) can retain read-access to information about pods and images.
This will be used by the rkt API service (targeted for the next release) so that it can run as an unprivileged user on the system.
This support is still considered partially experimental.
Some tasks like rkt image gc remain a root-only operation.

/etc/hosts support

If no /etc/hosts exists in an application filesystem at the time it starts running, rkt will now provide a basic default version of this file.
If rkt detects one already in the app’s filesystem (whether through being included in an image, or a volume mounted in), it will make no changes. (#1541 [https://github.com/rkt/rkt/pull/1541])

Other new features

	rkt now supports setting supplementary group IDs on processes (#1514 [https://github.com/rkt/rkt/pull/1514]).

	rkt’s use of cgroups has been reworked to facilitate rkt running on a variety of operating systems like Void and older non-systemd distributions (#1437 [https://github.com/rkt/rkt/pull/1437], #1320 [https://github.com/rkt/rkt/pull/1320], #1076 [https://github.com/rkt/rkt/pull/1076], #1042 [https://github.com/rkt/rkt/pull/1042])

	If rkt run is used with an image that does not have an app section, rkt will now create one if the user provides an --exec flag (#1427 [https://github.com/rkt/rkt/pull/1427])

	A new rkt image gc command adds initial support for garbage collecting images from the store (#1487 [https://github.com/rkt/rkt/pull/1487]). This removes treeStores not referenced by any non-GCed rkt pod.

	rkt list now provides more information including image version and hash (#1559 [https://github.com/rkt/rkt/pull/1559])

	rkt image list output now shows shortened hash identifiers by default, and human readable date formats.
To use the previous output format, use the --full flag. (#1455 [https://github.com/rkt/rkt/pull/1455])

	rkt prepare gained the --exec flag, which restores flag-parity with rkt run (#1410 [https://github.com/rkt/rkt/pull/1410])

	lkvm stage1 backend has experimental support for rkt enter (#1303 [https://github.com/rkt/rkt/pull/1303])

	rkt now supports empty volume types (#1502 [https://github.com/rkt/rkt/pull/1502])

	An early, experimental read-only API definition has been added (#1359 [https://github.com/rkt/rkt/pull/1359], #1518 [https://github.com/rkt/rkt/pull/1518]).

Bug fixes

	Fixed bug in --stage1-image option which prevented it from using URLs (#1524 [https://github.com/rkt/rkt/pull/1524])

	Fixed bug in rkt trust‘s handling of --root (#1494 [https://github.com/rkt/rkt/pull/1494])

	Fixed bug when decompressing xz-compressed images (#1462 [https://github.com/rkt/rkt/pull/1462], #1224 [https://github.com/rkt/rkt/pull/1224])

	In earlier versions of rkt, hooks had an implicit timeout of 30 seconds, causing some pre-start jobs which took a long time to be killed. This implicit timeout has been removed. (#1547 [https://github.com/rkt/rkt/pull/1547])

	When running with the lkvm stage1, rkt now sets $HOME if it is not already set, working around a bug in the lkvm tool (#1447 [https://github.com/rkt/rkt/pull/1447], #1393 [https://github.com/rkt/rkt/pull/1393])

	Fixed bug preventing run-prepared from working if the metadata service was not available (#1436 [https://github.com/rkt/rkt/pull/1436])

Other changes

	Bumped appc spec to 0.7.1 (#1543 [https://github.com/rkt/rkt/pull/1543])

	Bumped CNI and netlink dependencies (#1476 [https://github.com/rkt/rkt/pull/1476])

	Bumped ioprogress to a version which prevents the download bar from being drawn when rkt is not drawing to a terminal (#1423 [https://github.com/rkt/rkt/pull/1423], #1282 [https://github.com/rkt/rkt/pull/1282])

	Significantly reworked rkt’s internal use of systemd to orchestrate apps, which should facilitate more granular control over pod lifecycles (#1407 [https://github.com/rkt/rkt/pull/1407])

	Reworked rkt’s handling of images with non-deterministically dependencies (#1240 [https://github.com/rkt/rkt/pull/1240], #1198 [https://github.com/rkt/rkt/pull/1198]).

	rkt functional tests now run appc’s ACE validator, which should ensure that rkt is always compliant with the specification. (#1473 [https://github.com/rkt/rkt/pull/1473])

	A swathe of improvements to the build system
	make clean should now work

	Different rkt stage1 images are now built with different names (#1406 [https://github.com/rkt/rkt/pull/1406])

	rkt can now build on older Linux distributions (like CentOS 6) (#1529 [https://github.com/rkt/rkt/pull/1529])

	Various internal improvements to the functional test suite to improve coverage and consolidate code

	The “ACI” field header in rkt image output has been changed to “IMAGE NAME”

	rkt image rm now exits with status 1 on any failure (#1486 [https://github.com/rkt/rkt/pull/1486])

	Fixed permissions in the default stage1 image (#1503 [https://github.com/rkt/rkt/pull/1503])

	Added documentation for prepare and run-prepared subcommands (#1526 [https://github.com/rkt/rkt/pull/1526])

	rkt should now report more helpful errors when encountering manifests it does not understand (#1471 [https://github.com/rkt/rkt/pull/1471])

v0.8.1

rkt v0.8.1 is an incremental release with numerous bug fixes and clean-up to the build system. It also introduces a few small new features and UX improvements.

	New features and UX changes:
	rkt rm is now variadic: it can now remove multiple pods in one command, by UUID

	The APPNAME column in rkt image list output has been changed to the more accurate NAME. This involves a schema change in rkt’s on-disk datastore, but this should be upgraded transparently.

	Headers are now sent when following HTTP redirects while trying to retrieve an image

	The default metadata service port number was changed from a registered/reserved IANA port to an arbitrary port in the non-dynamic range

	Added the ability to override arguments for network plugins

	rkt will now error out if someone attempts to use --private-users with the lkvm backend

	Bug fixes:
	Fixed creation of /tmp in apps’ root filesystems with correct permissions

	Fixed garbage collection after umounts (for example, if a system reboots before a pod is cleanly destroyed)

	Fixed a race in interactive mode when using the lkvm backend that could cause a deadlock or segfault

	Fixed bad parameter being passed to the metadata service (“uid” -> “uuid”)

	Fixed setting of file permissions during stage1 set up

	Fixed a potential race condition during simultaneous iptables invocation

	Fixed ACI download progress being sent to stderr instead of stdout, now consistent with the output during retrieval of Docker images

	rkt help prepare will now show the correct default stage1 image

	rkt will refuse to add isolators with nil Limits, preventing a panic caused by an ambiguity in upstream appc schema

	Other changes:
	Reworked the SELinux implementation to use systemd-nspawn‘s native context-switching feature

	Added a workaround for a bug in Docker <1.8 when it is run on the same system as rkt (see https://github.com/rkt/rkt/issues/1210#issuecomment-132793300)

	Added a rkt-xxxx-tapN name to tap devices that rkt creates

	Functional tests now clean intermediate images between tests

	Countless improvements and cleanup to the build system

	Numerous documentation improvements, including splitting out all top-level rkt subcommands into their own documents

v0.8.0

rkt 0.8.0 includes support for running containers under an LKVM hypervisor
and experimental user namespace support.

Full changelog:

	Documentation improvements

	Better integration with systemd:

	journalctl -M

	machinectl {reboot,poweroff}

	Update stage1’s systemd to v222

	Add more functional tests

	Build system improvements

	Fix bugs with garbage-collection

	LKVM stage1 support with network and volumes

	Smarter image discovery: ETag and Cache-Control support

	Add CNI DHCP plugin

	Support systemd socket activation

	Backup CAS database when migrating

	Improve error messages

	Add the ability to override ACI exec

	Optimize rkt startup times when a stage1 is present in the store

	Trust keys fetched via TLS by default

	Add the ability to garbage-collect a specific pod

	Add experimental user namespace support

	Bugfixes

v0.7.0

rkt 0.7.0 includes new subcommands for rkt image to manipulate images from
the local store.

It also has a new build system based on autotools and integration with SELinux.

Full changelog:

	New subcommands for rkt image: extract, render and export

	Metadata service:
	Auth now based on tokens

	Registration done by default, unless –mds-register=false is passed

	Build:
	Remove support for Go 1.3

	Replace build system with autoconf and make

	Network: fixes for plugins related to mnt namespace

	Signature: clearer error messages

	Security:
	Support for SELinux

	Check signature before downloading

	Commands: fix error messages and parameter parsing

	Output: reduce output verbosity

	Systemd integration: fix stop bug

	Tests: Improve tests output

v0.6.1

The highlight of this release is the support of per-app memory and CPU
isolators. This means that, in addition to restricting a pod’s CPU and memory
usage, individual apps inside a pod can also be restricted now.

rkt 0.6.1 also includes a new CLI/subcommand framework, more functional testing
and journalctl integration by default.

Full changelog:

	Updated to v0.6.1 of the appc spec

	support per-app memory and CPU isolators

	allow network selection to the –private-net flag which can be useful for
grouping certain pods together while separating others

	move to the Cobra CLI/subcommand framework

	per-app logging via journalctl now supported by default

	stage1 runs an unpatched systemd v220

	to help packagers, rkt can generate stage1 from the binaries on the host at
runtime

	more functional tests

	bugfixes

v0.5.6

rkt 0.5.6 includes better integration with systemd on the host, some minor bug
fixes and a new ipvlan network plugin.

	Updated to v0.5.2 of the appc spec

	support running from systemd unit files for top-level isolation

	support per-app logging via journalctl. This is only supported if stage1 has
systemd v219 or v220

	add ipvlan network plugin

	new rkt subcommand: cat-manifest

	extract ACI in a chroot to avoid malformed links modifying the host
filesystem

	improve rkt error message if the user doesn’t provide required volumes

	fix rkt status when using overlayfs

	support for some arm architectures

	documentation improvements

v0.5.5

rkt 0.5.5 includes a move to cni [https://github.com/appc/cni] network
plugins, a number of minor bug fixes and two new experimental commands for
handling images: rkt images and rkt rmimage.

Full changelog:

	switched to using cni [https://github.com/appc/cni] based network plugins

	fetch images dependencies recursively when ACIs have dependent images

	fix the progress bar used when downloading images with no content-length

	building the initial stage1 can now be done on various versions of systemd

	support retrying signature downloads in the case of a 202

	remove race in doing a rkt enter

	various documentation fixes to getting started and other guides

	improvements to the functional testing using a new gexpect, testing for
non-root apps, run context, port test, and more

v0.5.4

rkt 0.5.4 introduces a number of new features - repository authentication,
per-app arguments + local image signature verification, port forwarding and
more. Further, although we aren’t yet guaranteeing API/ABI stability between
releases, we have added important work towards this goal including functional
testing and database migration code.

This release also sees the removal of the --spawn-metadata-svc flag to
rkt run. The flag was originally provided as a convenience, making it easy
for users to get started with the metadata service. In rkt v0.5.4 we removed
it in favor of explicitly starting it via rkt metadata-service command.

Full changelog:

	added configuration support for repository authentication (HTTP Basic Auth,
OAuth, and Docker repositories). Full details in
Documentation/configuration.md

	rkt run now supports per-app arguments and per-image --signature
specifications

	rkt run and rkt fetch will now verify signatures for local image files

	rkt run with --private-net now supports port forwarding (using
--port=NAME:1234)

	rkt run now supports a --local flag to use only local images (i.e. no
discovery or remote image retrieval will be performed)

	added initial support for running directly from a pod manifest

	the store DB now supports migrations for future versions

	systemd-nspawn machine names are now set to pod UUID

	removed the --spawn-metadata-svc option from rkt run; this mode was
inherently racy and really only for convenience. A separate
rkt metadata-service invocation should be used instead.

	various internal codebase refactoring: “cas” renamed to “store”, tasks to
encapsulate image fetch operations, etc

	bumped docker2aci to support authentication for Docker registries and fix a
bug when retrieving images from Google Container Registry

	fixed a bug where --interactive did not work with arguments

	garbage collection for networking is now embedded in the stage1 image

	when rendering images into the treestore, a global syncfs() is used instead
of a per-file sync(). This should significantly improve performance when
first extracting large images

	added extensive functional testing on semaphoreci.com/coreos/rkt

	added a test-auth-server to facilitate testing of fetching images

v0.5.3

This release contains minor updates over v0.5.2, notably finalising the move to
pods in the latest appc spec and becoming completely name consistent on rkt.

	{Container,container} changed globally to {Pod,pod}

	{Rocket,rocket} changed globally to rkt

	rkt install properly sets permissions for all directories

	rkt fetch leverages the cas.Store TmpDir/TmpFile functions (now exported)
to generate temporary files for downloads

	Pod lifecycle states are now exported for use by other packages

	Metadata service properly synchronizes access to pod state

v0.5.2

This release is a minor update over v0.5.1, incorporating several bug fixes and
a couple of small new features:

	rkt enter works when overlayfs is not available

	rkt run now supports the --no-overlay option referenced (but not
implemented!) in the previous release

	the appc-specified environment variables (PATH, HOME, etc) are once again set
correctly during rkt run

	metadata-service no longer manipulates IP tables rules as it connects over a
unix socket by default

	pkg/lock has been improved to also support regular (non-directory) files

	images in the cas are now locked at runtime (as described in #460 [https://github.com/rkt/rkt/pull/460])

v0.5.1

This release updates Rocket to follow the latest version of the appc spec,
v0.5.1. This involves the major change of moving to pods and Pod Manifests
(which enhance and supplant the previous Container Runtime Manifest). The
Rocket codebase has been updated across the board to reflect the schema/spec
change, as well as changing various terminology in other human-readable places:
for example, the previous ambiguous (unqualified) “container” is now replaced
everywhere with “pod”.

This release also introduces a number of key features and minor changes:

	overlayfs support, enabled for rkt run by default (disable with
--no-overlayfs)

	to facilitate overlayfs, the CAS now features a tree store which stores
expanded versions of images

	the default stage1 (based on systemd) can now be built from source, instead
of only derived from an existing binary distribution as previously. This is
configurable using the new RKT_STAGE1_USR_FROM environment variable when
invoking the build script - see fdcd64947

	the metadata service now uses a Unix socket for registration; this limits who
can register/unregister pods by leveraging filesystem permissions on the
socket

	rkt list now abbreviates UUIDs by default (configurable with --full)

	the ImageManifest’s readOnly field (for volume mounts) is now overridden by
the rkt command line

	a simple debug script (in scripts/debug) to facilitate easier debugging of
applications running under Rocket by injecting Busybox into the pod

	documentation for the metadata service, as well as example systemd unit files

v0.4.2

	First support for interactive containers, with the rkt run --interactive
flag. This is currently only supported if a container has one app. #562 [https://github.com/rkt/rkt/pull/562] #601 [https://github.com/rkt/rkt/pull/601]

	Add container IP address information to rkt list

	Provide /sys and /dev/shm to apps (per spec)

	Introduce “latest” pattern handling for local image index

	Implement FIFO support in tar package

	Restore atime and mtime during tar extraction

	Bump docker2aci dependency

v0.4.1

This is primarily a bug fix release with the addition of the rkt install
subcommand to help people setup a unprivileged rkt fetch based on unix users.

	Fix marshalling error when running containers with resource isolators

	Fixup help text on run/prepare about volumes

	Fixup permissions in rkt trust created files

	Introduce the rkt install subcommand

v0.4.0

This release is mostly a milestone release and syncs up with the latest release
of the appc spec [https://github.com/appc/spec/releases/tag/v0.4.0] yesterday.

Note that due to the introduction of a database for indexing the local CAS,
users upgrading from previous versions of Rocket on a system may need to clear
their local cache by removing the cas directory. For example, using the
standard Rocket setup, this would be accomplished with
rm -fr /var/lib/rkt/cas.

Major changes since v0.3.2:

	Updated to v0.4.0 of the appc spec

	Introduced a database for indexing local images in the CAS (based on
github.com/cznic/ql)

	Refactored container lifecycle to support a new “prepared” state, to

	pre-allocate a container UUID without immediately running the application

	Added support for passing arguments to apps through the rkt run CLI

	Implemented ACI rendering for dependencies

	Renamed rkt metadatasvc -> rkt metadata-service

	Added documentation around networking, container lifecycle, and rkt commands

v0.3.2

This release introduces much improved documentation and a few new features.

The highlight of this release is that Rocket can now natively run Docker
images. To do this, it leverages the appc/docker2aci library which performs a
straightforward conversion between images in the Docker format and the appc
format.

A simple example:

$ rkt --insecure-skip-verify run docker://redis docker://tenstartups/redis-commander
rkt: fetching image from docker://redis
rkt: warning: signature verification has been disabled
Downloading layer: 511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158

Note that since Docker images do not support image signature verifications, the
-insecure-skip-verify must be used.

Another important change in this release is that the default location for the
stage1 image used by rkt run can now be set at build time, by setting the
RKT_STAGE1_IMAGE environment variable when invoking the build script. (If
this is not set, rkt run will continue with its previous behaviour of looking
for a stage1.aci in the same directory as the binary itself. This makes it
easier for distributions to package Rocket and include the stage1 wherever
they choose (for example, /usr/lib/rkt/stage1.aci). For more information, see
https://github.com/coreos/rocket/pull/520

v0.3.1

The primary motivation for this release is to resynchronise versions with the
appc spec. To minimise confusion in the short term we intend to keep the
major/minor version of Rocket aligned with the version of spec it implements;
hence, since yesterday v0.3.0 of the appc spec was released, today Rocket
becomes v0.3.1. After the spec (and Rocket) reach v1.0.0, we may relax this
restriction.

This release also resolves an upstream bug in the appc discovery code which was
causing rkt trust to fail in certain cases.

v0.3.0

This is largely a momentum release but it does introduce a few new user-facing
features and some important changes under the hood which will be of interest to
developers and distributors.

First, the CLI has a couple of new commands:

	rkt trust can be used to easily add keys to the public keystore for ACI
signatures (introduced in the previous release). This supports retrieving
public keys directly from a URL or using discovery to locate public keys - a
simple example of the latter is rkt trust --prefix coreos.com/etcd. See the
commit for other examples.

	rkt list is an extremely simple tool to list the containers on the system

As mentioned, v0.3.0 includes two significant changes to the Rocket build process:

	Instead of embedding the (default) stage1 using go-bindata, Rocket now
consumes a stage1 in the form of an actual ACI, containing a rootfs and
stage1 init/exec binaries. By default, Rocket will look for a stage1.aci in
the same directory as the location of the binary itself, but the stage1 can
be explicitly specified with the new -stage1-image flag (which deprecates
-stage1-init and -stage1-rootfs). This makes it much more straightforward
to use alternative stage1 images with rkt and facilitates packing it for
different distributions like Fedora.

	Rocket now vendors a copy of the appc/spec instead of depending on HEAD. This
means that Rocket can be built in a self-contained and reproducible way and
that master will no longer break in response to changes to the spec. It also
makes explicit the specific version of the spec against which a particular
release of Rocket is compiled.

As a consequence of these two changes, it is now possible to use the standard
Go workflow to build the Rocket CLI (e.g. go get github.com/coreos/rocket/rkt
will build rkt). Note however that this does not implicitly build a stage1, so
that will still need to be done using the included ./build script, or some
other way for those desiring to use a different stage1.

v0.2.0

This introduces countless features and improvements over v0.1.1. Highlights
include several new commands (rkt status, rkt enter, rkt gc) and
signature validation.

v0.1.1

The most significant change in this release is that the spec has been split
into its own repository (https://github.com/appc/spec), and significantly
updated since the last release - so many of the changes were to update to match
the latest spec.

Numerous improvements and fixes over v0.1.0:

	Rocket builds on non-Linux (in a limited capacity)

	Fix bug handling uncompressed images

	More efficient image handling in CAS

	mkrootfs now caches and GPG checks images

	stage1 is now properly decoupled from host runtime

	stage1 supports socket activation

	stage1 no longer warns about timezones

	cas now logs download progress to stdout

	rkt run now acquires an exclusive lock on the container directory and records
the PID of the process

v0.1.0

	tons of documentation improvements added

	actool introduced along with documentation

	image discovery introduced to rkt run and rkt fetch

v0.0.0

Initial release.

Community Code of Conduct

rkt follows the CNCF Code of Conduct [https://github.com/cncf/foundation/blob/master/code-of-conduct.md].

rkt roadmap

This document defines a high level roadmap for rkt development.
The dates below should not be considered authoritative, but rather indicative of the projected timeline of the project.
The milestones defined in GitHub [https://github.com/rkt/rkt/milestones] represent the most up-to-date state of affairs.

rkt’s version 1.0 release marks the command line user interface and on-disk data structures as stable and reliable for external development.

Ongoing projects

	Kubernetes CRI [https://github.com/rkt/rkt/projects/1]: adapting rkt to offer first-class implementation of the Kubernetes Container Runtime Interface.

	OCI native support [https://github.com/rkt/rkt/projects/4]: supporting OCI specs natively in rkt.

	appc phase-out [https://github.com/rkt/rkt/projects/5]: following OCI evolution and stabilization, appc will be naturally deprecated and phased-out.

Upcoming

Future tasks without a specific timeline are tracked at https://github.com/rkt/rkt/milestone/30.

How to Contribute

rkt is Apache 2.0 licensed and accepts contributions via
GitHub pull requests. This document outlines some of the conventions on
development workflow, commit message formatting, contact points and other
resources to make it easier to get your contribution accepted.

Certificate of Origin

By contributing to this project you agree to the Developer Certificate of
Origin (DCO). This document was created by the Linux Kernel community and is a
simple statement that you, as a contributor, have the legal right to make the
contribution. See the DCO file for details.

Email and Chat

The project has a mailing list and two discussion channels in IRC:

	Email: rkt-dev [https://groups.google.com/forum/#!forum/rkt-dev]

	IRC: #rkt on freenode.org, for general discussion

	IRC: #rkt-dev on freenode.org, for development discussion

Please avoid emailing maintainers found in the MAINTAINERS file directly. They
are very busy and read the mailing lists.

Getting Started

	Fork the repository on GitHub

	Read building rkt for build and manually-running-the-tests for test instructions

	Play with the project, submit bugs, submit patches!

Contribution Flow

This is a rough outline of what a contributor’s workflow looks like:

	Create a topic branch from where you want to base your work (usually master).

	Make commits of logical units.

	Make sure your commit messages are in the proper format (see below).

	Push your changes to a topic branch in your fork of the repository.

	Make sure the tests pass, and add any new tests as appropriate.

	Submit a pull request to the original repository.

	Submit a comment with the sole content “@reviewer PTAL” (please take a look) in GitHub
and replace “@reviewer” with the correct recipient.

	When addressing pull request review comments add new commits to the existing pull request or,
if the added commits are about the same size as the previous commits,
squash them into the existing commits.

	Once your PR is labelled as “reviewed/lgtm” squash the addressed commits in one commit.

	If your PR addresses multiple subsystems reorganize your PR and create multiple commits per subsystem.

	Your contribution is ready to be merged.

Thanks for your contributions!

Coding Style

Go style in the rkt project essentially just means following the upstream conventions:

	Effective Go [https://golang.org/doc/effective_go.html]

	CodeReviewComments [https://github.com/golang/go/wiki/CodeReviewComments]

	Godoc [http://blog.golang.org/godoc-documenting-go-code[here](https://github.com/coreos/docs/tree/master/golang).]

It’s recommended to set a save hook in your editor of choice that runs goimports against your code.

Documentation Style

Project docs should follow the Documentation style and formatting
guide [https://github.com/coreos/docs/tree/master/STYLE.md]. Thank you for documenting!

Format of the Commit Message

We follow a rough convention for commit messages that is designed to answer two
questions: what changed and why. The subject line should feature the what and
the body of the commit should describe the why.

scripts: add the test-cluster command

this uses tmux to setup a test cluster that you can easily kill and
start for debugging.

Fixes #38

The format can be described more formally as follows:

<subsystem>: <what changed>
<BLANK LINE>
<why this change was made>
<BLANK LINE>
<footer>

The first line is the subject and should be no longer than 70 characters, the
second line is always blank, and other lines should be wrapped at 80 characters.
This allows the message to be easier to read on GitHub as well as in various
git tools.

Format of the Pull Request

The pull request title and the first paragraph of the pull request description
is being used to generate the changelog of the next release.

The convention follows the same rules as for commit messages. The PR title reflects the
what and the first paragraph of the PR description reflects the why.
In most cases one can reuse the commit title as the PR title
and the commit messages as the PR description for the PR.

If your PR includes more commits spanning mulitple subsystems one should change the PR title
and the first paragraph of the PR description to reflect a summary of all changes involved.

A large PR must be split into multiple commits, each with clear commit messages.
Intermediate commits should compile and pass tests. Exceptions to non-compilable must have a valid reason, i.e. dependency bumps.

Do not add entries in the changelog yourself. They will be overwritten when creating a new release.

Stage1 build

Stage1 build is invoked by the parent makefile by calling stage1.mk
read the stage1.mk contents for details

 Some network configuration files that are copied in to the stage1’s rootfs.

NOTE:

Due to a small bug in the makefile, if you rename or remove any files here,
you will have to make clean.

rkt functional tests

This directory contains a set of functional tests for rkt.
The tests use gexpect [https://github.com/coreos/gexpect] to spawn various rkt run commands and look for expected output.

Semaphore Continuous Integration System

The tests run on the Semaphore CI system [https://semaphoreci.com/] through the rktbot [https://semaphoreci.com/rktbot] user, which is part of the coreos [https://semaphoreci.com/coreos/] org on Semaphore.
This user is authorized against the corresponding rktbot [https://github.com/rktbot] GitHub account.
The credentials for rktbot are currently managed by CoreOS.

The tests are executed on Semaphore at each Pull Request (PR).
Each GitHub PR page should have a link to the test results on Semaphore [https://semaphoreci.com/coreos/rkt].

Developers can disable the tests by adding [skip ci] in the last commit message of the PR.

Build settings

Select the “Other” language.
We don’t use “Go” language setting, because rkt is not a typical go project (building it with a go get won’t get you too far).
Also, the “Go” setting is creating a proper GOPATH directory structure with some symlinks on top, which rkt does not need at all and some go tools we use do not like the symlinks in GOPATH at all.

The tests will run on two VMs.
The “Setup” and “Post thread” sections will be executed on both VMs.
The “Thread 1” and “Thread 2” will be executed in parallel in separate VMs.

Setup

sudo groupadd rkt
sudo gpasswd -a runner rkt
./tests/install-deps.sh

Thread 1

./tests/build-and-run-tests.sh -f none -c
./tests/build-and-run-tests.sh -f kvm -c

Thread 2

./tests/build-and-run-tests.sh -f coreos -c
./tests/build-and-run-tests.sh -f host -c

Post thread

git clean -ffdx

Other possible commands

The LKVM stage1 or other versions of systemd are not currently tested.
It would be possible to add more tests with the following commands:

./tests/build-and-run-tests.sh -f src -s v227 -c
./tests/build-and-run-tests.sh -f src -s master -c
./tests/build-and-run-tests.sh -f src -s v229 -c

build-and-run-tests.sh parameters description

The build script has the following parameters:

	-c - Run cleanup. Cleanup has two phases: after build and after tests. In the after build phase, this script removes artifacts from external dependencies (like kernel sources in the kvm flavor). In the after tests phase, it removes rkt build artifacts and (if the build is running on CI or if the -x flag is used) it unmounts the remaining rkt mountpoints, removes unused rkt NICs and flushes the current state of IPAM IP reservation.

	-d - Run build based on current state of local rkt repository instead of commited changes.

	-f - Select flavor for rkt. You can choose only one from the following list: “coreos, host, kvm, none, src”.

	-j - Build without running unit and functional tests. Artifacts are available after build.

	-s - Systemd version. You can choose master or a tag from the systemd GitHub repository [https://github.com/systemd/systemd].

	-u - Show usage message and exit.

	-x - Force after-test cleanup on a non-CI system. WARNING: This flag can affect your system. Use with caution.

Platform

Select Ubuntu 14.04 LTS v1503 (beta with Docker support).
The platform with Docker support means the tests will run in a VM.

Manually running the tests

The tests can be run manually. There is a rule to run unit, functional and all tests.

Unit tests

The unit tests can be run with make unit-check after you built the project.

Functional tests

The functional tests require to pass --enable-functional-tests to the configure script, then, after building the project, you can run the tests.

./autogen.sh
./configure --enable-functional-tests
make -j4
make functional-check

For more details about the --enable-functional-tests parameter, see configure script parameters documentation.

All tests

To run all tests, see functional tests to configure and build it with functional tests enabled. Instead of make functional-check you have to call make check to run all tests.

Passing additional parameters

You can use a GO_TEST_FUNC_ARGS variable to pass additional parameters to go test.
This is mostly useful for running only the selected functional tests.
The variable is ignored in unit tests.

make check GO_TEST_FUNC_ARGS='-run NameOfTheTest'
make functional-check GO_TEST_FUNC_ARGS='-run NameOfTheTest'

Run go help testflag to get more informations about possible flags accepted by go test.

Running the benchmark

Running the benchmark is similar to running the other tests, we just need to pass additional
parameters to go test:

make check GO_TEST_FUNC_ARGS='-bench=. -run=Benchmark'
make functional-check GO_TEST_FUNC_ARGS='-bench=. -run=Benchmark'

Tests on several Linux distributions

rkt aims to be supported on several Linux distributions.
In order to notice distro-specific issues, Continuous Integration should ideally run the tests on several Linux distributions.

rkt tests can be intrusive and require full root privileges.
Each test should be run on a fresh VM.
VMs should not be reused for next tests.

Jenkins

Tests run on Jenkins Jenkins [https://jenkins-ci.org/] for each PR [https://jenkins-rkt-public.prod.coreos.systems/job/rkt-github-ci/] and periodically on the master branch [https://jenkins-rkt-public.prod.coreos.systems/job/rkt-master-periodic/].

AMIs

The script tests/aws.sh can generate a AMI of the specified Linux distribution with all the dependencies rkt needs.

First, install aws-cli [https://github.com/aws/aws-cli] and configure it with your AWS credentials.
Then, create a key pair and a security group for rkt tests:

$ tests/aws.sh setup

Then generate an AMI of the specified Linux distribution:

$ tests/aws.sh fedora-22
$ tests/aws.sh fedora-23
$ tests/aws.sh fedora-24
$ tests/aws.sh fedora-rawhide
$ tests/aws.sh ubuntu-1604
$ tests/aws.sh ubuntu-1510
$ tests/aws.sh debian
$ tests/aws.sh centos

The generated AMIs can then be used to configure Jenkins.

If new packages are needed they can be added to the corresponding cloudinit files in test/cloudinit.

rkt-monitor

This is a small go utility intended to monitor the CPU and memory usage of rkt
and its children processes. This is accomplished by exec’ing rkt, reading proc
once a second for a specified duration, and printing the results.

This utility has a handful of flags:

Usage:
 rkt-monitor IMAGE [flags]

Examples:
rkt-monitor mem-stresser.aci -v -d 30s

Flags:
 -f, --to-file[=false]: Save benchmark results to files in a temp dir
 -w, --output-dir="/tmp": Specify directory to write results
 -p, --rkt-dir="": Directory with rkt binary
 -s, --stage1-path="": Path to Stage1 image to use, default: coreos
 -d, --duration="10s": How long to run the ACI
 -h, --help[=false]: help for rkt-monitor
 -r, --repetitions=1: Numbers of benchmark repetitions
 -o, --show-output[=false]: Display rkt's stdout and stderr
 -v, --verbose[=false]: Print current usage every second

Some acbuild scripts and golang source code is provided to build ACIs that
attempt to eat up resources in different ways.

An example usage:

$./tests/rkt-monitor/build-stresser.sh all
Building worker...
Beginning build with an empty ACI
Setting name of ACI to appc.io/rkt-cpu-stresser
Copying host:build-rkt-1.13.0+git/target/bin/cpu-stresser to aci:/worker
Setting exec command [/worker]
Writing ACI to cpu-stresser.aci
Ending the build
Beginning build with an empty ACI
Setting name of ACI to appc.io/rkt-mem-stresser
Copying host:build-rkt-1.13.0+git/target/bin/mem-stresser to aci:/worker
Setting exec command [/worker]
Writing ACI to mem-stresser.aci
Ending the build
Beginning build with an empty ACI
Setting name of ACI to appc.io/rkt-log-stresser
Copying host:build-rkt-1.13.0+git/target/bin/log-stresser to aci:/worker
Setting exec command [/worker]
Writing ACI to log-stresser.aci
Ending the build
$ sudo ./build-rkt-1.13.0+git/target/bin/rkt-monitor log-stresser.aci -r 3 -d 10s
ld-linux-x86-64(29641): seconds alive: 10 avg CPU: 28.948348% avg Mem: 3 mB peak Mem: 3 mB
systemd(29698): seconds alive: 10 avg CPU: 0.000000% avg Mem: 4 mB peak Mem: 4 mB
systemd-journal(29700): seconds alive: 10 avg CPU: 89.878237% avg Mem: 7 mB peak Mem: 7 mB
worker(29705): seconds alive: 10 avg CPU: 8.703743% avg Mem: 5 mB peak Mem: 6 mB
load average: Load1: 2.430000 Load5: 1.560000 Load15: 1.100000
container start time: 2539.947085ms
container stop time: 14.724007ms
systemd-journal(29984): seconds alive: 10 avg CPU: 88.553202% avg Mem: 7 mB peak Mem: 7 mB
worker(29989): seconds alive: 10 avg CPU: 8.415344% avg Mem: 5 mB peak Mem: 6 mB
ld-linux-x86-64(29890): seconds alive: 10 avg CPU: 28.863746% avg Mem: 3 mB peak Mem: 3 mB
systemd(29982): seconds alive: 10 avg CPU: 0.000000% avg Mem: 4 mB peak Mem: 4 mB
load average: Load1: 2.410000 Load5: 1.600000 Load15: 1.120000
container start time: 2771.857209ms
container stop time: 15.30096ms
systemd(30270): seconds alive: 10 avg CPU: 0.000000% avg Mem: 4 mB peak Mem: 4 mB
systemd-journal(30272): seconds alive: 10 avg CPU: 88.863170% avg Mem: 7 mB peak Mem: 7 mB
worker(30277): seconds alive: 10 avg CPU: 8.503793% avg Mem: 5 mB peak Mem: 6 mB
ld-linux-x86-64(30155): seconds alive: 10 avg CPU: 29.522864% avg Mem: 3 mB peak Mem: 3 mB
load average: Load1: 2.270000 Load5: 1.600000 Load15: 1.120000
container start time: 2641.468717ms
container stop time: 14.610641ms

WARNING

The API defined here is proposed, experimental, and (for now) subject to change at any time.

If you think you want to use it, or for any other queries, contact rkt-dev@googlegroups.com or file an issue [https://github.com/rkt/rkt/issues/new]

For more information, see:

	#1208

	#1359

	#1468

	API Service Subcommand

Protobuf

The rkt gRPC API uses Protocol Buffers for its services.
In order to rebuild the generated code make sure you have protobuf 3.0.0 installed (https://github.com/google/protobuf)
and execute from the top-level directory:

$ make protobuf

 Environment

Replace this with the output of:

printf "$(rkt version)\n--\n$(uname -srm)\n--\n$(cat /etc/os-release)\n--\n$(systemctl --version)\n"

What did you do?

What did you expect to see?

What did you see instead?

 The MIT License (MIT)

Copyright (c) 2014 Brian Goff

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Signing and Verification Guide

This guide will walk you through signing, distributing, and verifying the hello ACI created in the getting started guide.

hello-0.0.1-linux-amd64.aci

	Signing ACIs

	Distributing Images via Meta Discovery

	Verifying Images with rkt

	Establishing Trust

	Example Usage

Signing ACIs

By default rkt requires ACIs to be signed using a gpg detached signature.
The following steps will walk you through the creation of a gpg keypair suitable for signing an ACI.
If you have an existing gpg signing key skip to the Signing the ACI step.

Generate a gpg signing key

Create a file named gpg-batch

%echo Generating a default key
Key-Type: RSA
Key-Length: 2048
Subkey-Type: RSA
Subkey-Length: 2048
Name-Real: Carly Container
Name-Comment: ACI signing key
Name-Email: carly@example.com
Expire-Date: 0
Passphrase: rkt
%pubring rkt.pub
%secring rkt.sec
%commit
%echo done

Generate the key using batch mode

$ gpg --batch --gen-key gpg-batch

List the keys

$ gpg --no-default-keyring \
--secret-keyring ./rkt.sec --keyring ./rkt.pub --list-keys
./rkt.pub

pub 2048R/26EF7A14 2015-01-09
uid [unknown] Carly Container (ACI signing key) <carly@example.com>
sub 2048R/B9C074CD 2015-01-09

From the output above the level of trust for the signing key is unknown.
This will cause the following warning if we attempt to validate an ACI signed with this key using the gpg cli:

gpg: WARNING: This key is not certified with a trusted signature!

Since we know exactly where this key came from let’s trust it:

$ gpg --no-default-keyring \
--secret-keyring ./rkt.sec \
--keyring ./rkt.pub \
--edit-key 26EF7A14 \
trust
gpg (GnuPG/MacGPG2) 2.0.22; Copyright (C) 2013 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Secret key is available.

pub 2048R/26EF7A14 created: 2015-01-09 expires: never usage: SC
 trust: unknown validity: unknown
sub 2048R/B9C074CD created: 2015-01-09 expires: never usage: E
[unknown] (1). Carly Container (ACI signing key) <carly@example.com>

Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

 1 = I don't know or won't say
 2 = I do NOT trust
 3 = I trust marginally
 4 = I trust fully
 5 = I trust ultimately
 m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

pub 2048R/26EF7A14 created: 2015-01-09 expires: never usage: SC
 trust: ultimate validity: unknown
sub 2048R/B9C074CD created: 2015-01-09 expires: never usage: E
[unknown] (1). Carly Container (ACI signing key) <carly@example.com>
Please note that the shown key validity is not necessarily correct
unless you restart the program.

gpg> quit

Export the public key

$ gpg --no-default-keyring --armor \
--secret-keyring ./rkt.sec --keyring ./rkt.pub \
--export carly@example.com > pubkeys.gpg

Signing the ACI

$ gpg --no-default-keyring --armor \
--secret-keyring ./rkt.sec --keyring ./rkt.pub \
--output hello-0.0.1-linux-amd64.aci.asc \
--detach-sig hello-0.0.1-linux-amd64.aci

Verify the image using gpg

$ gpg --no-default-keyring \
--secret-keyring ./rkt.sec --keyring ./rkt.pub \
--verify hello-0.0.1-linux-amd64.aci.asc hello-0.0.1-linux-amd64.aci
gpg: Signature made Fri Jan 9 05:01:49 2015 PST using RSA key ID 26EF7A14
gpg: Good signature from "Carly Container (ACI signing key) <carly@example.com>" [ultimate]

At this point you should have the following three files:

hello-0.0.1-linux-amd64.aci.asc
hello-0.0.1-linux-amd64.aci
pubkeys.gpg

Distributing Images via Meta Discovery

Host example.com/hello with the following HTML contents and meta tags:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="ac-discovery" content="example.com/hello https://example.com/images/{name}-{version}-{os}-{arch}.{ext}">
 <meta name="ac-discovery-pubkeys" content="example.com/hello https://example.com/pubkeys.gpg">
 </head>
</html>

Serve the following files at the locations described in the meta tags:

https://example.com/images/example.com/hello-0.0.1-linux-amd64.aci.asc
https://example.com/images/example.com/hello-0.0.1-linux-amd64.aci
https://example.com/pubkeys.gpg

rkt Integration

Let’s walk through the steps rkt takes when fetching images using Meta Discovery.
The following rkt command:

$ rkt run example.com/hello:0.0.1

results in rkt retrieving the following URIs:

https://example.com/hello?ac-discovery=1
https://example.com/images/example.com/hello-0.0.1-linux-amd64.aci
https://example.com/images/example.com/hello-0.0.1-linux-amd64.aci.asc

The first response contains the template URL used to download the ACI and detached signature file.

<meta name="ac-discovery" content="example.com/hello https://example.com/images/{name}-{version}-{os}-{arch}.{ext}">

rkt populates the {os} and {arch} based on the current running system.
The {version} will be taken from the tag given on the command line or “latest” if not supplied.
The {ext} will be substituted appropriately depending on artifact being retrieved: .aci will be used for ACI images and .aci.asc will be used for detached signatures.

Once the ACI image has been downloaded rkt will extract the image’s name from the image metadata.
The image’s name will be used to locate trusted public keys in the rkt keystore and perform signature validation.

Verifying Images with rkt

Establishing Trust

By default rkt does not trust any signing keys.
Trust is established by storing public keys in the rkt keystore.
This can be done using rkt trust or manually, using the procedures described in the next section.

The following directories make up the default rkt keystore layout:

/etc/rkt/trustedkeys/root.d
/etc/rkt/trustedkeys/prefix.d
/usr/lib/rkt/trustedkeys/root.d
/usr/lib/rkt/trustedkeys/prefix.d

System administrators should store trusted keys under /etc/rkt as /usr/lib/rkt is designed to be used by the OS distribution.
Trusted keys are saved in the desired directory named after the fingerprint of the public key.
System administrators can “disable” a trusted key by writing an empty file under /etc/rkt.
For example, if your OS distribution shipped with the following trusted key:

/usr/lib/rkt/trustedkeys/prefix.d/coreos.com/a175e31de7e3c5b9d2c4603e4dfb22bf75ef7a23

you can disable it by writing the following empty file:

/etc/rkt/trustedkeys/prefix.d/coreos.com/a175e31de7e3c5b9d2c4603e4dfb22bf75ef7a23

Trusting the example.com/hello key

As an example, let’s look at how we can trust a key used to sign images of the prefix example.com/hello

Using rkt trust

The easiest way to trust a key is to use the rkt trust subcommand.
In this case, we directly pass it the URI containing the public key we wish to trust:

$ rkt trust --prefix=example.com/hello https://example.com/pubkeys.gpg
Prefix: "example.com/hello"
Key: "https://example.com/aci-pubkeys.gpg"
GPG key fingerprint is: B346 E31D E7E3 C6F9 D1D4 603F 4DFB 61BF 26EF 7A14
 Carly Container (ACI signing key) <carly@example.com>
 Are you sure you want to trust this key (yes/no)? yes
 Trusting "https://example.com/aci-pubkeys.gpg" for prefix "example.com/hello".
 Added key for prefix "example.com/hello" at "/etc/rkt/trustedkeys/prefix.d/example.com/hello/b346e31de7e3c6f9d1d4603f4dfb61bf26ef7a14"

Now the public key with fingerprint b346e31de7e3c6f9d1d4603f4dfb61bf26ef7a14 will be trusted for all images with a name prefix of example.com/hello.

Manually adding keys

An alternative to using rkt trust is to manually trust keys by adding them to rkt’s database.
We do this by downloading the key, capturing its fingerprint, and storing it in the database using the fingerprint as filename

Download the public key

$ curl -O https://example.com/pubkeys.gpg

Capture the public key fingerprint

$ gpg --no-default-keyring --with-fingerprint --keyring ./pubkeys.gpg carly@example.com
pub 2048R/26EF7A14 2015-01-09
 Key fingerprint = B346 E31D E7E3 C6F9 D1D4 603F 4DFB 61BF 26EF 7A14
uid [unknown] Carly Container (ACI signing key) <carly@example.com>
sub 2048R/B9C074CD 2015-01-09

Remove white spaces and convert to lowercase:

$ echo "B346 E31D E7E3 C6F9 D1D4 603F 4DFB 61BF 26EF 7A14" | \
 tr -d "[:space:]" | tr '[:upper:]' '[:lower:]'

b346e31de7e3c6f9d1d4603f4dfb61bf26ef7a14

Trust the key for the example.com/hello prefix

mkdir -p /etc/rkt/trustedkeys/prefix.d/example.com/hello
mv pubkeys.gpg /etc/rkt/trustedkeys/prefix.d/example.com/hello/b346e31de7e3c6f9d1d4603f4dfb61bf26ef7a14

Now the public key with fingerprint b346e31de7e3c6f9d1d4603f4dfb61bf26ef7a14 will be trusted for all images with a name prefix of example.com/hello.

Trusting a key globally

If you would like to trust a public key for any image, store the public key in one of the following “root” directories:

/etc/rkt/trustedkeys/root.d
/usr/lib/rkt/trustedkeys/root.d

Example Usage

Download, verify and run an ACI

By default rkt will attempt to download the ACI detached signature and verify the image:

rkt run example.com/hello:0.0.1
rkt: starting to discover app img example.com/hello:0.0.1
rkt: starting to fetch img from http://example.com/images/example.com/hello-0.0.1-linux-amd64.aci
Downloading aci: [] 7.24 KB/1.26 MB
rkt: example.com/hello:0.0.1 verified signed by:
 Carly Container (ACI signing key) <carly@example.com>
/etc/localtime is not a symlink, not updating container timezone.
^]^]Container stage1 terminated by signal KILL.

Use the --insecure-options=image flag to disable image verification for a single run:

rkt --insecure-options=image run example.com/hello:0.0.1
rkt: starting to discover app img example.com/hello:0.0.1
rkt: starting to fetch img from http://example.com/images/example.com/hello-0.0.1-linux-amd64.aci
rkt: warning: image signature verification has been disabled
Downloading aci: [=] 32.8 KB/1.26 MB
/etc/localtime is not a symlink, not updating container timezone.
^]^]Container stage1 terminated by signal KILL.

Notice when the --insecure-options=image flag is used, rkt will print the following warning:

rkt: warning: image signature verification has been disabled

Download and verify an ACI

Using the fetch subcommand you can download and verify an ACI without immediately running a pod.
This can be useful to precache ACIs on a large number of hosts:

rkt fetch example.com/hello:0.0.1
rkt: starting to discover app img example.com/hello:0.0.1
rkt: starting to fetch img from http://example.com/images/example.com/hello-0.0.1-linux-amd64.aci
Downloading aci: [] 14.5 KB/1.26 MB
rkt: example.com/hello:0.0.1 verified signed by:
 Carly Container (ACI signing key) <carly@example.com>
sha512-b3f138e10482d4b5f334294d69ae5c40

As before, use the --insecure-options=image flag to disable image verification:

rkt --insecure-options=image fetch example.com/hello:0.0.1
rkt: starting to discover app img example.com/hello:0.0.1
rkt: starting to fetch img from http://example.com/images/example.com/hello-0.0.1-linux-amd64.aci
rkt: warning: image signature verification has been disabled
Downloading aci: [] 4.34 KB/1.26 MB
sha512-b3f138e10482d4b5f334294d69ae5c40

Production users

This document tracks people and use cases for rkt in production. Join the community [https://github.com/rkt/rkt/], and help us keep the list up-to-date.

BlaBlaCar [https://www.blablacar.com/]

BlaBlaCar is a trusted car-pooling service based in France. They’ve blogged about [http://blablatech.com/blog/why-and-how-blablacar-went-full-containers] the stability of rkt being a big appeal.

	Media report from LeMagIT [http://www.lemagit.fr/actualites/4500272608/avec-rkt-10-CoreOS-estime-que-sa-technologie-de-conteneur-est-mure-pour-la-production]: “rkt has become the container technology of choice for the French carpool specialist Blablacar. The company, which has adopted early container technologies, now relies on rkt and CoreOS for 90% of its applications.”

	Media report from Silicon.fr [http://www.silicon.fr/blablacar-generalise-conteneurs-rocket-159564.html], “Rocket tackled the limitations we had identified with Docker. In particular, the solution eliminated the use of a daemon (process running in the background, Editor’s note) and approached the network part in a very modular way”

Kubernetes and CoreOS Container Linux

rkt is used by Container Linux to execute the Kubernetes on node agent called the “kubelet”. This enables users to be able to have cluster controlled versioning of this critical component. There are many documented production users of Kubernetes and Container Linux including all of the users of CoreOS Tectonic [https://coreos.com/tectonic].

Kumul.us [https://kumul.us/]

Kumulus Technologies offers classes and services to optimize your Cloud. They’ve blogged about [https://kumul.us/docker-youve-failed-me-again-rkt-please-save-me/] rkt’s pod native features and Kubernetes support being a reason for their adoption.

Kinvolk.io [https://kinvolk.io/]

Kinvolk are a professional consulting team and active contributors to systemd, rkt, and the Linux kernel. rkt helps them easily test various Linux kernels and configurations [https://kinvolk.io/blog/2017/02/using-custom-rkt-stage1-images-to-test-against-various-kernel-versions/].

Adfin.com [http://www.adfin.com/]

Per Milosz Tanski, from HN comments [https://news.ycombinator.com/item?id=12366932]. “The same experiences we switched to using rkt, supervised by upstart (and now systemd). We have an “application” state template in our salt config and every docker update something would cause all of them to fail. Thankful the “application” state template abstracted running container enough were we switched from docker -> rkt under the covers without anybody noticing, except now we no longer fearing of container software updates.”

Individual Use Cases

These are blog posts and stories from people evaluating rkt. Although most aren’t (yet) production use cases, the links offer useful information and shared experience in deploying rkt.

	Adrian de Jonge [https://medium.com/@adriaandejonge/moving-from-docker-to-rkt-310dc9aec938#.earel7ndf] moving from docker to rkt

	Kushal Das, Cloud Engineer at RedHat [https://kushaldas.in/posts/using-rkt-and-systemd.html] using rkt and systemd

	Julia Evans, Infrastructure Engineer at Stripe [https://jvns.ca/blog/2016/11/03/what-happens-when-you-run-a-rkt-container/] what happens when you run a rkt container

	Nicholas Dziuba [https://www.reddit.com/r/coreos/comments/5vhrlw/thesis_with_rkt_evaluation/] writing his thesis on the security model of rkt

	John Pettigrew, Developer at Clevyr [https://pettigrew.rocks/2016/05/30/a-beginners-guide-to-rkt-containers/] a beginner’s guide to rkt containers

	Joey Zwicker, at Co-founder of Pachyderm.io [https://news.ycombinator.com/item?id=12103201] rkt support is on the roadmap. See Does Pachyderm only work with docker containers? [http://docs.pachyderm.io/en/stable/FAQ.html]

	Fernando Ike, Sales Engineer at Highwinds [http://www.slideshare.net/fernandoike/docker-baleias-vs-rkt-foguetes] docker vs rkt comparison

	Scott Lowe, Developer at VMWare [http://www.slideshare.net/lowescott/getting-started-with-containers] getting started with containers

	Yutaka Matsubara, CTO at Abby [http://www.slideshare.net/YutakaMatsubara/rocket-46800960] rkt

	Thuc Le Dong, Developer at Silicon Straits [http://www.slideshare.net/ledongthuc/rkt-container-engine] overview of the rkt container engine

	Avi Deitcher, Business Technology Consultant [http://blog.atomicinc.com/2016/10/14/can-rktkubernetes-provide-a-real-alternative-to-docker-2896/]

Using rkt with Kubernetes (aka “rktnetes”)

Kubernetes [http://kubernetes.io] is a system for managing containerized applications across a cluster of machines.
Kubernetes runs all applications in containers.
In the default setup, this is performed using the Docker engine, but Kubernetes also features support for using rkt as its container runtime backend.
This allows a Kubernetes cluster to leverage some of rkt’s security features and native pod support.

Configuring rkt as the Kubernetes container runtime

The container runtime is configured at the kubelet level.
The kubelet is the agent that runs on each machine to manage containers.
The kubelet provides several flags to use rkt as the container runtime:

	--container-runtime=rkt Sets the node’s container runtime to rkt.

	--rkt-api-endpoint=HOST:PORT Sets the endpoint of the rkt API service. Default to localhost:15441.

	--rkt-path=PATH_TO_RKT_BINARY Sets the path of the rkt binary. If empty, it will search for rkt in $PATH.

	--rkt-stage1-image=STAGE1_NAME Sets the name of the stage1 image, e.g. coreos.com/rkt/stage1-coreos. If not set, the default stage1 image (coreos.com/rkt/stage1-coreos) is used.

Check the rktnetes getting started guide [http://kubernetes.io/docs/getting-started-guides/rkt/] for information about setting up and using a rktnetes cluster.

Configuring rkt using supported setup tools

The coreos-kubernetes [https://github.com/coreos/coreos-kubernetes] and coreos-baremetal [https://github.com/coreos/coreos-baremetal] repos both support configuring rkt as the Kubernetes runtime out of the box.

Check out the coreos-kubernetes repo if you want to spin up a cluster on AWS [https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html] or locally with Vagrant [https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant-single.html]. The common configuration option here is setting CONTAINER_RUNTIME environment variable to rkt.

For baremetal, check out the Kubernetes guides here [https://github.com/coreos/coreos-baremetal/blob/master/Documentation/kubernetes.md].

Using Minikube [https://github.com/kubernetes/minikube]

Minikube is a tool that makes it easy to run Kubernetes locally. It launches a single-node cluster inside a VM aimed at users looking to try out Kubernetes. Follow the instructions in the Minikube Quickstart [https://github.com/kubernetes/minikube/blob/master/README.md#quickstart] section on how to get started with rktnetes.

Current Status

Integration of rkt as a container runtime was officially announced in the Kubernetes 1.3 release [http://blog.kubernetes.io/2016/07/rktnetes-brings-rkt-container-engine-to-Kubernetes.html].
Known issues and tips for using rkt with Kubernetes can be found in the rktnetes notes [http://kubernetes.io/docs/getting-started-guides/rkt/notes/].

Image Fetching Behavior

When fetching, rkt will try to avoid unnecessary network transfers: if an updated image is already in the local store there’s no need to download it again.

This behavior can be controlled with the --pull-policy flag.

General Behavior

The following table describes the meaning of the --pull-policy flag.

This flag accepts one of three options:

Option | Description
————————- | —————————————————————————————————
new | Default behavior in run and prepare Check the store, and if the image is missing fetch from remote
update | Default behavior in fetch Attempt to fetch from remote, but if the remote image matches something in our store don’t pull it
never | Only check the store, and don’t fetch from remote.

Details

Here we detail the actions taken by rkt when fetching from store and remote for each type of image argument.

Fetch from | Image argument | Detailed behavior
———— | —————— | ——————————————————————————————–
store | file:// | Use the specified file
store | http(s):// | Check for the URL in the local store. If found, use the corresponding image.
store | docker:// | Check for the URL in the local store. If found, use the corresponding image.
store | image name | Check local store. If found, use that image. If there’s a file in the current directory named like the image name, use that file instead.
remote | file:// | Use the specified file
remote | http(s):// | Search in the store if the URL is available. If it’s available and the saved Cache-Control maxage > 0 determine if the image should be downloaded. If it’s not expired use the image. Otherwise download (sending if available the saved ETag). If the download returns a 304 Not Modified use the image already saved in the local store.
remote | docker:// | Fetch using docker2aci.
remote | image name | Execute discovery logic [https://github.com/appc/spec/blob/master/spec/discovery.md#app-container-image-discovery]. If discovery is successful use the discovered URL doing the above remote http(s):// image case. If there’s a file in the current directory named like the image name, use that file instead.

rkt vs other projects

This document describes how rkt compares to various other projects in the container ecosystem.

	rkt vs Docker
	Process Model

	Privilege Separation

	rkt vs runC

	rkt vs containerd

	rkt vs LXC/LXD

	rkt vs OpenVZ

	rkt vs systemd-nspawn

	rkt vs machinectl

	rkt vs qemu-kvm, lkvm

rkt vs Docker

The Docker Engine is an application container runtime implemented as a central API daemon.
Docker can resolve a “Docker Image [https://github.com/docker/docker/blob/master/image/spec/v1.md]” name, such as quay.io/coreos/etcd, and download, execute, and monitor the application container.
Functionally, this is all similar to rkt; however, along with “Docker Images”, rkt can also download and run “App Container Images” (ACIs) specified by the App Container Specification [https://github.com/appc/spec] (appc).

Besides also supporting ACIs, rkt has a substantially different architecture that is designed with composability and security in mind.

Process Model

Prior to Docker version 1.11, the Docker Engine daemon downloaded container images, launched container processes, exposed a remote API, and acted as a log collection daemon, all in a centralized process running as root.

While such a centralized architecture is convenient for deployment, it does not follow best practices for Unix process and privilege separation; further, it makes Docker difficult to properly integrate with Linux init systems such as upstart and systemd.

Since version 1.11, the Docker daemon no longer handles the execution of containers itself.
Instead, this is now handled by containerd [https://containerd.tools].
More precisely, the Docker daemon prepares the image as an Open Container Image [https://www.opencontainers.org/] (OCI) bundle and makes an API call to containerd to start the OCI bundle.
containerd then starts the container using runC [https://github.com/opencontainers/runc].

[image: rkt-vs-docker-process-model]

Since running a Docker container from the command line (i.e. using docker run) just talks to the Docker daemon API, which is in turn directly or indirectly — via containerd — responsible for creating the container, init systems are unable to directly track the life of the actual container process.

rkt has no centralized “init” daemon, instead launching containers directly from client commands, making it compatible with init systems such as systemd, upstart, and others.

Privilege Separation

rkt uses standard Unix group permissions to allow privilege separation between different operations.
Once the rkt data directory is correctly set up, container image downloads and signature verification can run as a non-privileged user.

[image: rkt-vs-docker-fetch]

rkt vs runC

runC [https://github.com/opencontainers/runc] is a low-level container runtime and an implementation of the Open Container Initiative specification [https://github.com/opencontainers/specs].
runC exposes and expects a user to understand low-level details of the host operating system and configuration.
It requires the user to separately download or cryptographically verify container images, and for “higher level tools” to prepare the container filesystem.
runC does not have a centralized daemon, and, given a properly configured “OCI bundle”, can be integrated with init systems such as upstart and systemd.

rkt includes the same functionality as runC but does not expect a user to understand low-level details of the operating system to use, and can be invoked as simply as rkt run coreos.com/etcd,version=v2.2.0.
It can download both “Docker Images [https://github.com/docker/docker/blob/master/image/spec/v1.md]” and “App Container Images [https://github.com/appc/spec]”.
As rkt does not have a centralized daemon it can also be easily integrated with init systems such as upstart and systemd.

rkt vs containerd

containerd [https://containerd.tools] is a daemon to control runC [https://github.com/opencontainers/runc].
It has a command-line tool called ctr which is used to interact with the containerd daemon.
This makes the containerd process model similar to that of the Docker process model, illustrated above.

Unlike the Docker daemon it has a reduced feature set; not supporting image download, for example.

rkt has no centralized daemon to manage containers, instead launching containers directly from client commands, making it compatible with init systems such as systemd, upstart, and others.

rkt vs LXC/LXD

LXC is a system container runtime designed to execute “full system containers”, which generally consist of a full operating system image.
An LXC process, in most common use cases, will boot a full Linux distribution such as Debian, Fedora, Arch, etc, and a user will interact with it similarly to how they would with a Virtual Machine image.

LXC may also be used to run (but not download) application containers, but this use requires more understanding of low-level operating system details and is a less common practice.
LXC can download “full system container” images from various public mirrors and cryptographically verify them.
LXC does not have a central daemon and can integrate with init systems such as upstart and systemd.

LXD is similar to LXC but is a REST API on top of liblxc which forks a monitor and container process.
This ensures the LXD daemon is not a central point of failure and containers continue running in case of LXD daemon failure.
All other details are nearly identical to LXC.

rkt can download, cryptographically verify, and run application container images.
It is not designed to run “full system containers” but instead individual applications such as web apps, databases, or caches.
As rkt does not have a centralized daemon it can be integrated with init systems such as upstart and systemd.

rkt vs OpenVZ

OpenVZ is a system container runtime designed to execute “full system containers” which are generally a full system image.
An OpenVZ process, in most common use cases, will boot a full Linux Distro such as Debian, Fedora, Arch, etc and a user will interact with it similarly to a Virtual Machine image.
OpenVZ can download “full system container” images from various public mirrors and cryptographically verify them.
OpenVZ does not have a central daemon and can integrate with init systems such as upstart and systemd.

rkt can download, cryptographically verify, and run application container images.
It is not designed to run “full system containers” but instead individual applications such as web apps, databases, or caches.
As rkt does not have a centralized daemon it can be integrated with init systems such as upstart and systemd.

rkt vs systemd-nspawn

systemd-nspawn is a container runtime designed to execute a process inside of a Linux container.
systemd-nspawn gets its name from “namespace spawn”, which means it only handles process isolation and does not do resource isolation like memory, CPU, etc.
systemd-nspawn can run an application container or system container but does not, by itself, download or verify images.
systemd-nspawn does not have a centralized daemon and can be integrated with init systems such as upstart and systemd.

rkt can download, cryptographically verify, and run application container images.
It is not designed to run “full system containers”, but instead individual applications such as web apps, databases, or caches.
As rkt does not have a centralized daemon it can be integrated with init systems such as upstart and systemd.
By default rkt uses systemd-nspawn to configure the namespaces for an application container.

rkt vs machinectl

machinectl is a system manager that can be used to query and control the state of registered systems on a systemd host.
These systems may be registered Virtual Machines, systemd-nspawn containers, or other runtimes that register with the systemd registration manager, systemd-machined.
Among many other things, machinectl can download, cryptographically verify, extract and trigger to run a systemd-nspawn container off the extracted image content.
By default these images are expected to be “full system containers”, as systemd-nspawn is passed the “–boot” argument.

On systemd hosts, rkt will integrate with systemd-machined in much the same way that machinectl containers will: any pods created by rkt will be registered as machines on the host and can be interacted with using machinectl commands.
However, in being more oriented towards applications, rkt abstracts the pod lifecycle away from the user.
rkt also provides a more configurable and advanced workflow around discovering, downloading and verifying images, as well as supporting more image types.
Unlike machinectl, rkt execs systemd-nspawn directly instead of creating a systemd service, allowing it to integrate cleanly with any supervisor system.
Furthermore, in addition to namespace isolation, rkt can set up various other kinds of isolation (e.g. resources) defined in the appc specification.

rkt vs qemu-kvm, lkvm

qemu-kvm and lkvm are userspace tools that execute a full system image inside of a Virtual Machine using the Linux KVM infrastructure [https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine].
A system image will commonly include a boot loader, kernel, root filesystem and be pre-installed with applications to run on boot.
Most commonly qemu-kvm is used for IaaS systems such as OpenStack, Eucalyptus, etc.
The Linux KVM infrastructure is trusted for running multi-tenanted virtual machine infrastructures and is generally accepted as being secure enough to run untrusted system images.
qemu-kvm and lkvm do not have a centralized daemon and can be integrated with init systems such as upstart and systemd.

rkt can download, cryptographically verify, and run application container images.
It is not designed to run “full system images” but instead individual applications such as web apps, databases, or caches.
As rkt does not have a centralized daemon it can be integrated with init systems such as upstart and systemd.
rkt can optionally use lkvm or qemu-kvm as an additional security measure over a Linux container, at a slight cost to performance and flexibility; this feature can be configured using the kvm (aka Clear Containers) stage1.

packaging rkt

This document aims to provide information about packaging rkt in Linux distributions. It covers dependencies, file ownership and permissions, and tips to observe packaging policies.

Build-time dependencies

Please see the list of build-time dependencies.

Offline builds

By default, the rkt build will download a CoreOS Container Linux PXE image from the internet and extract some binaries, such as systemd-nspawn and bash. However, some packaging environments don’t allow internet access during the build. To work around this, download the Container Linux PXE image before starting the build process, and use the --with-coreos-local-pxe-image-path and --with-coreos-local-pxe-image-systemd-version parameters. For more details, see the configure script parameters documentation.

Bundling with systemd

Most Linux distributions don’t allow the use of prebuilt binaries, or reuse of code that is already otherwise packaged. systemd falls in this category, as Debian and Fedora already package systemd, and rkt needs systemd.

	Debian Policy Manual, section 4.13 Convenience copies of code [https://www.debian.org/doc/debian-policy/ch-source.html#s-embeddedfiles]

	Fedora Packaging Guidelines [https://fedoraproject.org/wiki/Packaging:Guidelines#No_inclusion_of_pre-built_binaries_or_libraries]

	Fedora Packaging Committee [https://www.mail-archive.com/devel@lists.fedoraproject.org/msg88276.html]

The configure script’s --with-stage1-flavors option can be set to host to avoid rkt’s dependency on systemd in these environments:

./configure --with-stage1-flavors=host

The stage1-host.aci archive generated by this build will not contain bash, systemd, or any other binaries from external sources. The binaries embedded in the stage1 archive are all built from the sources in the rkt git repository. The external binaries needed by this stage1-host.aci are copied from the host at run time. Packages using the --with-stage1-flavors=host option must therefore add a run-time dependency on systemd and bash. Whenever systemd and bash are upgraded on the host, rkt will use the new version at run time. It becomes the packager’s responsibility to test the rkt package whenever a new version of systemd is packaged.

For more details, see the configure script parameters documentation.

Glide

rkt uses Glide [https://glide.sh] to maintain a copy of dependencies in its source repository [https://github.com/rkt/rkt/tree/master/vendor].

Run-time dependencies

Please see the list of run-time dependencies.

Packaging Externals

Ownership and permissions of rkt directories

In general, subdirectories of /var/lib/rkt, and /etc/rkt should be created with the same ownership and permissions as described in the directory list [https://github.com/rkt/rkt/blob/master/dist/init/systemd/tmpfiles.d/rkt.conf].

Any rkt package should create a system group rkt, and rkt-admin. The directory /var/lib/rkt should belong to group rkt with the setgid bit set (chmod g+s). The directory /etc/rkt should belong to group rkt-admin with the setgid bit set (chmod g+s).

When the ownership and permissions of /var/lib/rkt are set up correctly, members of group rkt should be able to fetch ACIs. Members of group rkt-admin should be able to trust GPG keys, and add additional configurations in /etc/rkt. Root privilege is still required to run pods.

The motivation to have separate rkt, and rkt-admin groups is that the person who makes administrative changes would likely be different than the unprivileged user who is able to fetch.

systemd units

A few example systemd unit files for rkt helper services [https://github.com/rkt/rkt/tree/master/dist/init/systemd] are included in the rkt sources. These units demonstrate systemd-managed units to run the rkt metadata-service with socket-activation, the rkt api-service, and a periodic garbage collection service invoked at 12-hour intervals to purge dead pods.

rkt and SELinux

rkt supports running containers using SELinux SVirt [http://selinuxproject.org/page/SVirt].
At start-up, rkt will attempt to read /etc/selinux/(policy)/contexts/lxc_contexts.
If this file doesn’t exist, no SELinux transitions will be performed.
If it does, rkt will generate a per-instance context.
All mounts for the instance will be created using the file context defined in lxc_contexts, and the instance processes will be run in a context derived from the process context defined in lxc_contexts.

Processes started in these contexts will be unable to interact with processes or files in any other instance’s context, even though they are running as the same user.
Individual Linux distributions may impose additional isolation constraints on these contexts - please refer to your distribution documentation for further details.

Trying out rkt

This document introduces the basics of getting rkt and running a container with it. For a more in-depth guide to building application containers and running them with rkt, check out the getting started guide.

Giving rkt a spin takes just a few basic steps, detailed below.

	Install rkt:

	CoreOS Container Linux [https://coreos.com/os/docs/latest/#running-coreos] comes with rkt installed and configured. You can skip straight to running a container with rkt.

	On other Linux distributions, grab the latest rkt binary, or the distribution’s rkt package.

	On Mac or Windows, you can use a Vagrant virtual machine to run rkt

	Configure rkt: Optional steps that make it simpler to experiment with rkt.

	Download and run a container with rkt.

Using rkt on Linux

rkt is written in Go and can be compiled for several CPU architectures. The rkt project distributes binaries for amd64. These rkt binaries will run on any modern Linux amd64 kernel.

Running the latest rkt binary

To start running the latest version of rkt on amd64, grab the release directly from the rkt GitHub project:

wget https://github.com/rkt/rkt/releases/download/v1.28.1/rkt-v1.28.1.tar.gz
tar xzvf rkt-v1.28.1.tar.gz
cd rkt-v1.28.1
./rkt help

Installing rkt from a Linux distribution package

Another easy way to run rkt is to install it with your system’s package manager, like apt on Debian or dnf on Fedora. Check for your Linux distribution in the distributions list to see if a rkt package is available.

Running rkt in a Vagrant virtual machine

If your operating system isn’t Linux, it’s easy to run rkt in a Linux virtual machine with Vagrant. The instructions below start a virtual machine with rkt installed and ready to run.

Vagrant on Mac and Windows

For Mac (and other Vagrant) users we have set up a Vagrantfile. Make sure you have Vagrant [https://www.vagrantup.com/] 1.5.x or greater installed.

First, download the Vagrantfile and start a Linux machine with rkt installed by running vagrant up.

git clone https://github.com/rkt/rkt
cd rkt
vagrant up

Vagrant on Linux

To use Vagrant on a Linux machine, you may want to use libvirt as a VMM instead of VirtualBox. To do so, install the necessary plugins, convert the box, and start the machine using the libvirt provider:

vagrant plugin install vagrant-libvirt
vagrant plugin install vagrant-mutate
vagrant mutate ubuntu/xenial64 libvirt
vagrant up --provider=libvirt

Accessing the Vagrant VM and running rkt

With a subsequent vagrant ssh you will have access to run rkt:

If you are running an outdated version of VirtualBox, it may be that SSH asks for a password. You can find the password for the ubuntu user in ~/.vagrant.d/boxes/ubuntu-VAGRANTSLASH-xenial64/[DATE]/virtualbox/Vagrantfile
under config.ssh.password.

vagrant ssh
rkt --help

Consult the rkt manual for more details:

man rkt

The Vagrant setup also includes bash-completion to assist with rkt subcommands and options.

Container networking on a Vagrant VM

To reach pods from your host, determine the IP address of the Vagrant machine:

vagrant ssh -c 'ip address'
...
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 08:00:27:04:e4:5d brd ff:ff:ff:ff:ff:ff
 inet 172.28.128.3/24 brd 172.28.128.255 scope global enp0s8
 valid_lft forever preferred_lft forever
...

In this example, the Vagrant machine has the IP address 172.28.128.3.

The following command starts an nginx [https://hub.docker.com/_/nginx/] container, for simplicity using host networking to make the pod directly accessible on the host’s network address and ports. Signature validation isn’t supported for Docker registries and images, so --insecure-options=image switches off the signature check:

sudo rkt run --net=host --insecure-options=image docker://nginx

The nginx container is now accessible on the host under http://172.28.128.3.

In order to use containers with the default contained network, a route to the 172.16.28.0/24 container network must be configured from the host through the VM:

On Linux, execute:

sudo ip route add 172.16.28.0/24 via 172.28.128.3

On Mac OSX, execute:

sudo route -n add 172.16.28.0/24 172.28.128.3

Now nginx can be started using the default contained network:

$ sudo rkt run --insecure-options=image docker://nginx
$ rkt list
UUID APP IMAGE NAME STATE CREATED STARTED NETWORKS
0c3ab969 nginx registry-1.docker.io/library/nginx:latest running 2 minutes ago 2 minutes ago default:ip4=172.16.28.2

In this example, the nginx container was assigned the IP address 172.16.28.2 (the address assigned on your system may vary). Since we established a route from the host to the 172.16.28.0/24 pod network the nginx container is now accessible on the host under http://172.16.28.2.

Success! The rest of the guide can now be followed normally.

Configuring a rkt host

Once rkt is present on a machine, some optional configuration steps can make it easier to operate.

SELinux

rkt supports running under SELinux mandatory access controls, but an SELinux policy needs to be tailored to your distribution. New rkt users on distributions other than Container Linux should temporarily disable SELinux [https://www.centos.org/docs/5/html/5.1/Deployment_Guide/sec-sel-enable-disable.html] to make it easier to get started. If you can help package rkt for your distro, including SELinux policy support, please lend a hand [https://github.com/rkt/rkt/issues?utf8=%E2%9C%93&q=is%3Aopen+is%3Aissue+label%3Aarea%2Fdistribution++label%3Adependency%2Fexternal]!

Optional: Set up privilege separation

To allow different subcommands to use the least necessary privilege, rkt recognizes a rkt group that has read-write access to the rkt data directory. This allows rkt fetch, which downloads and verifies images, to run as an unprivileged user who is a member of the rkt group.

If you skip this section, you can still run sudo rkt fetch instead, but setting up a rkt group is a good basic security practice for production use. The rkt repo includes a setup-data-dir.sh [https://github.com/rkt/rkt/blob/master/dist/scripts/setup-data-dir.sh] script that can help set up the appropriate permissions for unprivileged execution of subcommands that manipulate the local store, but not the execution environment:

sudo groupadd rkt
export WHOAMI=$(whoami); sudo gpasswd -a $WHOAMI rkt
sudo ./dist/scripts/setup-data-dir.sh

Trust the signing key to validate unprivileged fetches

Trust the signing key for etcd images. This step must be run as root because access to the keystore is restricted from even the rkt group:

sudo ./rkt trust --prefix coreos.com/etcd

Fetch an image as an unprivileged member of the rkt group

Test this out by retrieving an etcd image using a non-root user in the rkt group. Make sure your shell is restarted to enable the rkt group for your user, or
just run newgrp rkt to enable it and continue in the same session.

Now fetch the etcd image as an unprivileged user:

./rkt fetch coreos.com/etcd:v3.1.7

Success! Now rkt can fetch and download images as an unprivileged user.

rkt basics

Building an App Container Image

rkt’s native image format is the App Container Image (ACI), defined in the App Container spec. The acbuild [https://github.com/containers/build] tool is a simple way to get started building ACIs. The appc build repository [https://github.com/appc/build-repository] has resources for building ACIs from a number of popular applications.

The docker2aci tool converts Docker images to ACIs [https://github.com/appc/docker2aci], or rkt can convert images directly from Docker registries on the fly.

The example below uses an etcd [https://coreos.com/etcd/] ACI constructed with acbuild by the etcd project’s build-aci script [https://github.com/coreos/etcd/blob/master/scripts/build-aci].

Downloading an ACI

rkt uses content addressable storage (CAS) to store an ACI on disk. In this example, an image is downloaded and added to the CAS. Downloading an image before running it is not strictly necessary –

 if an image is not present in the store, rkt will attempt to retrieve it [https://github.com/appc/spec/blob/master/spec/discovery.md] –

 but it illustrates how rkt works.

Since rkt verifies signatures by default, the first step is to trust the CoreOS public key [https://coreos.com/dist/pubkeys/aci-pubkeys.gpg] used to sign the image, using the rkt trust subcommand:

Trusting the signing key

$ sudo rkt trust --prefix=coreos.com/etcd
Prefix: "coreos.com/etcd"
Key: "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg"
GPG key fingerprint is: 8B86 DE38 890D DB72 9186 7B02 5210 BD88 8818 2190
 CoreOS ACI Builder <release@coreos.com>
Are you sure you want to trust this key (yes/no)? yes
Trusting "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg" for prefix "coreos.com/etcd".
Added key for prefix "coreos.com/etcd" at "/etc/rkt/trustedkeys/prefix.d/coreos.com/etcd/8b86de38890ddb7291867b025210bd8888182190"

For more information, see the detailed, step-by-step guide for the signing procedure.

Fetching the ACI

Now that the CoreOS public key is trusted, fetch the ACI using rkt fetch. This step doesn’t need root privileges if the rkt host has been configured for privilege separation:

$ rkt fetch coreos.com/etcd:v3.1.7
rkt: searching for app image coreos.com/etcd:v3.1.7
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v3.1.7/etcd-v3.1.7-linux-amd64.aci
Downloading aci: [==] 3.47 MB/3.7 MB
Downloading signature from https://github.com/coreos/etcd/releases/download/v3.1.7/etcd-v3.1.7-linux-amd64.asc
rkt: signature verified:
 CoreOS ACI Builder <release@coreos.com>
sha512-7d28419b27d5ae56cca97f4c6ccdd309c...

Downloading images from private registries

Downloading container images from a private registry usually involves passing usernames and passwords or other kinds of credentials to the server. rkt supports different authentication regimes with configuration files. The configuration documentation describes the file format and gives examples of setting up authentication with HTTP basic auth, OAuth bearer tokens, and other methods.

The image in the local store

For the curious, it is possible to list the hash-identified files written to disk in rkt’s CAS:

$ find /var/lib/rkt/cas/blob/
/var/lib/rkt/cas/blob/
/var/lib/rkt/cas/blob/sha512
/var/lib/rkt/cas/blob/sha512/1e
/var/lib/rkt/cas/blob/sha512/1e/sha512-7d28419b27d5ae56cca97f4c6ccdd309c95b967ca0119f6962b187d1287ec9967f49e367c36b0e44ecd73675bc06d112dec86386d0e9b84c2265cddd45d15020

According to the App Container specification [https://github.com/appc/spec/blob/master/spec/aci.md#image-archives], the SHA-512 hash is that of the tar file compressed in the ACI, and can be examined with standard tools:

$ wget https://github.com/coreos/etcd/releases/download/v3.1.7/etcd-v3.1.7-linux-amd64.aci
...
$ gzip -dc etcd-v3.1.7-linux-amd64.aci > etcd-v3.1.7-linux-amd64.tar
$ sha512sum etcd-v3.1.7-linux-amd64.tar
7d28419b27d5ae56cca97f4c6ccdd309c95b967ca0119f6962b187d1287ec9967f49e367c36b0e44ecd73675bc06d112dec86386d0e9b84c2265cddd45d15020 etcd-v3.1.7-linux-amd64.tar

Running an ACI with rkt

After it has been retrieved and stored locally, an ACI can be run by pointing rkt run at either the original image reference (in this case, coreos.com/etcd:v3.1.7), the ACI hash, or the full URL of the ACI. Therefore the following three examples are equivalent:

Running the container by ACI name and version

$ sudo rkt run coreos.com/etcd:v3.1.7
...
Press ^] three times to kill container

Running the container by ACI hash

$ sudo rkt run sha512-1eba37d9b344b33d272181e176da111e
...
^]]]

Running the container by ACI URL

$ sudo rkt run https://github.com/coreos/etcd/releases/download/v3.1.7/etcd-v3.1.7-linux-amd64.aci
...
^]]]

When given an ACI URL, rkt will do the appropriate ETag checking to fetch the latest version of the container image.

Exiting rkt pods

As shown above, repeating the ^] escape character three times kills the pod and detaches from its console to return to the user’s shell.

The escape character ^] is generated by Ctrl-] on a US keyboard. The required key combination will differ on other keyboard layouts. For example, the Swedish keyboard layout uses Ctrl-å on OS X, or Ctrl-^ on Windows, to generate the ^] escape character.

Dependencies

For the most part the codebase is self-contained (e.g. all dependencies are vendored), but assembly of the stage1 requires some other tools to be installed on the system.

Build-time dependencies

Basic

	GNU Make

	Go 1.5.3 or later

	autoconf

	aclocal (usually a part of automake)

	bash

	git

	glibc
	development headers

	the rkt binary links against the library

	gofmt (usually distributed with Go)

	govet (usually distributed with Go)

	TrouSerS (only when TPM is enabled)
	development headers

	the rkt binary links against the library

	libsystemd-journal
	development headers

	gpg (when running functional tests)

Additional dependencies when building any stage1 image

	glibc
	development headers

	the stage1 binaries link against the static library

	libdl
	development headers

	the stage1 binaries link against the library

	libacl
	development headers

	C compiler

Specific dependencies for the coreos/kvm flavor

	cat

	comm

	cpio

	gzip

	md5sum

	mktemp

	sort

	unsquashfs

	wget

	gpg (optional, required when downloading the CoreOS Container Linux PXE image during the build)

Specific dependencies for the kvm flavor

	patch

	tar

	xz

	build dependencies for kernel [https://www.kernel.org/doc/Documentation/Changes]
	bc

	binutils

	openssl

	build dependencies for lkvm and/or qemu

Specific dependencies for the src flavor

	build dependencies for systemd

Run-time dependencies

	Linux 3.18+ (ideally 4.3+ to have overlay-on-overlay working), with the following options configured:
	CONFIG_CGROUPS

	CONFIG_NAMESPACES

	CONFIG_UTS_NS

	CONFIG_IPC_NS

	CONFIG_PID_NS

	CONFIG_NET_NS

	CONFIG_OVERLAY_FS (nice to have)

Additional run-time dependencies for all stage1 image flavors

	libacl
	the library is optional (it is dlopened inside the stage1)

Specific dependencies for the host flavor

	bash

	systemd >= v222
	systemctl

	systemd-shutdown

	systemd

	systemd-journald

Capabilities Isolators Guide

This document is a walk-through guide describing how to use rkt isolators for
Linux Capabilities [https://lwn.net/Kernel/Index/#Capabilities].

	About Linux Capabilities

	Default Capabilities

	Capability Isolators

	Usage Example

	Overriding Capabilities

	Recommendations

About Linux Capabilities

Linux capabilities are meant to be a modern evolution of traditional UNIX
permissions checks.
The goal is to split the permissions granted to privileged processes into a set
of capabilities (eg. CAP_NET_RAW to open a raw socket), which can be
separately handled and assigned to single threads.

Processes can gain specific capabilities by either being run by superuser, or by
having the setuid/setgid bits or specific file-capabilities set on their
executable file.
Once running, each process has a bounding set of capabilities which it can
enable and use; such process cannot get further capabilities outside of this set.

In the context of containers, capabilities are useful for:

	Restricting the effective privileges of applications running as root

	Allowing applications to perform specific privileged operations, without
having to run them as root

For the complete list of existing Linux capabilities and a detailed description
of this security mechanism, see the capabilities(7) man page [http://man7.org/linux/man-pages/man7/capabilities.7.html].

Default capabilities

By default, rkt enforces a default set of capabilities [https://github.com/appc/spec/blob/master/spec/ace.md#oslinuxcapabilities-remove-set] onto applications.
This default set is tailored to stop applications from performing a large
variety of privileged actions, while not impacting their normal behavior.
Operations which are typically not needed in containers and which may
impact host state, eg. invoking reboot(2), are denied in this way.

However, this default set is mostly meant as a safety precaution against erratic
and misbehaving applications, and will not suffice against tailored attacks.
As such, it is recommended to fine-tune the capabilities bounding set using one
of the customizable isolators available in rkt.

Capability Isolators

When running Linux containers, rkt provides two mutually exclusive isolators
to define the bounding set under which an application will be run:

	os/linux/capabilities-retain-set

	os/linux/capabilities-remove-set

Those isolators cover different use-cases and employ different techniques to
achieve the same goal of limiting available capabilities. As such, they cannot
be used together at the same time, and recommended usage varies on a
case-by-case basis.

As the granularity of capabilities varies for specific permission cases, a word
of warning is needed in order to avoid a false sense of security.
In many cases it is possible to abuse granted capabilities in order to
completely subvert the sandbox: for example, CAP_SYS_PTRACE allows to access
stage1 environment and CAP_SYS_ADMIN grants a broad range of privileges,
effectively equivalent to root.
Many other ways to maliciously transition across capabilities have already been
reported [https://forums.grsecurity.net/viewtopic.php?f=7&t=2522].

Retain-set

os/linux/capabilities-retain-set allows for an additive approach to
capabilities: applications will be stripped of all capabilities, except the ones
listed in this isolator.

This whitelisting approach is useful for completely locking down environments
and whenever application requirements (in terms of capabilities) are
well-defined in advance. It allows one to ensure that exactly and only the
specified capabilities could ever be used.

For example, an application that will only need to bind to port 80 as
a privileged operation, will have CAP_NET_BIND_SERVICE as the only entry in
its “retain-set”.

Remove-set

os/linux/capabilities-remove-set tackles capabilities in a subtractive way:
starting from the default set of capabilities, single entries can be further
forbidden in order to prevent specific actions.

This blacklisting approach is useful to somehow limit applications which have
broad requirements in terms of privileged operations, in order to deny some
potentially malicious operations.

For example, an application that will need to perform multiple privileged
operations but is known to never open a raw socket, will have
CAP_NET_RAW specified in its “remove-set”.

Usage Example

The goal of these examples is to show how to build ACIs with acbuild [https://github.com/containers/build],
where some capabilities are either explicitly blocked or allowed.
For simplicity, the starting point will be the official Alpine Linux image from
CoreOS which ships with ping and nc commands (from busybox). Those
commands respectively requires CAP_NET_RAW and CAP_NET_BIND_SERVICE
capabilities in order to perform privileged operations.
To block their usage, capabilities bounding set
can be manipulated via os/linux/capabilities-remove-set or
os/linux/capabilities-retain-set; both approaches are shown here.

Removing specific capabilities

This example shows how to block ping only, by removing CAP_NET_RAW from
capabilities bounding set.

First, a local image is built with an explicit “remove-set” isolator.
This set contains the capabilities that need to be forbidden in order to block
ping usage (and only that):

$ acbuild begin
$ acbuild set-name localhost/caps-remove-set-example
$ acbuild dependency add quay.io/coreos/alpine-sh
$ acbuild set-exec -- /bin/sh
$ echo '{ "set": ["CAP_NET_RAW"] }' | acbuild isolator add "os/linux/capabilities-remove-set" -
$ acbuild write caps-remove-set-example.aci
$ acbuild end

Once properly built, this image can be run in order to check that ping usage has
been effectively disabled:

$ sudo rkt run --interactive --insecure-options=image caps-remove-set-example.aci
image: using image from file stage1-coreos.aci
image: using image from file caps-remove-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
ping: permission denied (are you root?)

This means that CAP_NET_RAW had been effectively disabled inside the container.
At the same time, CAP_NET_BIND_SERVICE is still available in the default bounding
set, so the nc command will be able to bind to port 80:

$ sudo rkt run --interactive --insecure-options=image caps-remove-set-example.aci
image: using image from file stage1-coreos.aci
image: using image from file caps-remove-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # nc -v -l -p 80
listening on [::]:80 ...

Allowing specific capabilities

In contrast to the example above, this one shows how to allow ping only, by
removing all capabilities except CAP_NET_RAW from the bounding set.
This means that all other privileged operations, including binding to port 80
will be blocked.

First, a local image is built with an explicit “retain-set” isolator.
This set contains the capabilities that need to be enabled in order to allowed
ping usage (and only that):

$ acbuild begin
$ acbuild set-name localhost/caps-retain-set-example
$ acbuild dependency add quay.io/coreos/alpine-sh
$ acbuild set-exec -- /bin/sh
$ echo '{ "set": ["CAP_NET_RAW"] }' | acbuild isolator add "os/linux/capabilities-retain-set" -
$ acbuild write caps-retain-set-example.aci
$ acbuild end

Once run, it can be easily verified that ping from inside the container is now
functional:

$ sudo rkt run --interactive --insecure-options=image caps-retain-set-example.aci
image: using image from file stage1-coreos.aci
image: using image from file caps-retain-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: seq=0 ttl=41 time=24.910 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 24.910/24.910/24.910 ms

However, all others capabilities are now not anymore available to the application.
For example, using nc to bind to port 80 will now result in a failure due to
the missing CAP_NET_BIND_SERVICE capability:

$ sudo rkt run --interactive --insecure-options=image caps-retain-set-example.aci
image: using image from file stage1-coreos.aci
image: using image from file caps-retain-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # nc -v -l -p 80
nc: bind: Permission denied

Overriding capabilities

Capability sets are typically defined when creating images, as they are tightly
linked to specific app requirements. However, image consumers may need to further
tweak/restrict the set of available capabilities in specific local scenarios.
This can be done either by permanently patching the manifest of specific images, or
by overriding capability isolators with command line options.

Patching images

Image manifests can be manipulated manually, by unpacking the image and editing
the manifest file, or with helper tools like actool [https://github.com/appc/spec#building-acis].
To override an image’s pre-defined capabilities set, replace the existing capabilities
isolators in the image with new isolators defining the desired capabilities.

The patch-manifest subcommand to actool manipulates the capabilities sets
defined in an image.
actool patch-manifest --capability changes the retain capabilities set.
actool patch-manifest --revoke-capability changes the remove set.
These commands take an input image, modify its existing capabilities sets, and
write the changes to an output image, as shown in the example:

$ actool cat-manifest caps-retain-set-example.aci
...
 "isolators": [
 {
 "name": "os/linux/capabilities-retain-set",
 "value": {
 "set": [
 "CAP_NET_RAW"
]
 }
 }
]
...

$ actool patch-manifest -capability CAP_NET_RAW,CAP_NET_BIND_SERVICE caps-retain-set-example.aci caps-retain-set-patched.aci

$ actool cat-manifest caps-retain-set-patched.aci
...
 "isolators": [
 {
 "name": "os/linux/capabilities-retain-set",
 "value": {
 "set": [
 "CAP_NET_RAW",
 "CAP_NET_BIND_SERVICE"
]
 }
 }
]
...

Now run the image to check that the CAP_NET_BIND_SERVICE capability added to
the patched image is retained as expected by using nc to listen on a
“privileged” port:

$ sudo rkt run --interactive --insecure-options=image caps-retain-set-patched.aci
image: using image from file stage1-coreos.aci
image: using image from file caps-retain-set-patched.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # nc -v -l -p 80
listening on [::]:80 ...

Overriding capabilities at run-time

Capabilities can be directly overridden at run time from the command-line,
without changing the executed images.
The --caps-retain option to rkt run manipulates the retain capabilities set.
The --caps-remove option manipulates the remove set.

Capabilities specified from the command-line will replace all capability settings in the image manifest.
Also as stated above the options --caps-retain, and --caps-remove are mutually exclusive.
Only one can be specified at a time.

Capabilities isolators can be added on the command line at run time by
specifying the desired overriding set, as shown in this example:

$ sudo rkt run --interactive quay.io/coreos/alpine-sh --caps-retain CAP_NET_BIND_SERVICE
image: using image from file /usr/local/bin/stage1-coreos.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
ping: permission denied (are you root?)

Capability sets are application-specific configuration entries, and in a
rkt run command line, they must follow the application container image to
which they apply.
Each application within a pod can have different capability sets.

Recommendations

As with most security features, capability isolators may require some
application-specific tuning in order to be maximally effective. For this reason,
for security-sensitive environments it is recommended to have a well-specified
set of capabilities requirements and follow best practices:

	Always follow the principle of least privilege and, whenever possible,
avoid running applications as root

	Only grant the minimum set of capabilities needed by an application,
according to its typical usage

	Avoid granting overly generic capabilities. For example, CAP_SYS_ADMIN and
CAP_SYS_PTRACE are typically bad choices, as they open large attack
surfaces.

	Prefer a whitelisting approach, trying to keep the “retain-set” as small as
possible.

Integrations

This document tracks projects that integrate with rkt. Join the community [https://github.com/rkt/rkt/], and help us keep the list up-to-date.

Projects

Kubernetes [https://kubernetes.io/docs/getting-started-guides/rkt/]: a enterprise grade container orchestration solution. Kubernetes offers rkt support as an alternative to the standard install.

Mesos [http://mesos.apache.org/blog/mesos-1-0-0-released/]: Apache Mesos abstracts CPU, memory, storage, and other compute resources away from machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to easily be built and run effectively.

Nomad [https://www.nomadproject.io/docs/drivers/rkt.html]: a container orchestration platform focused on ease of use. Nomad supports rkt through the rkt driver.

dgr [https://github.com/blablacar/dgr]: a container build and runtime tool, preferring convention over configuration.

Mulled [https://github.com/BioContainers/mulled]: a tool for generating minimal container images.

Quay.io [https://quay.io/]: an enterprise ready container registry. Quay hosts rkt images.

SELinux [https://coreos.com/rkt/docs/latest/selinux.html]: an access control and security toolkit for containers.

Linux [https://coreos.com/rkt/docs/latest/distributions.html]: an open and extensible OS. rkt is included in the package managers on Red Hat, Ubuntu, and many other popular Linux distributions.

cAdvisor [https://github.com/google/cadvisor]: a daemon that monitors resource usage and performance for running containers.

App Container basics

App Container [https://github.com/appc/spec/] (appc) is an open specification that defines several aspects of how to run applications in containers: an image format, runtime environment, and discovery protocol.

rkt’s native image format and runtime environment are those defined by the specification [https://github.com/appc/spec/blob/master/SPEC.md].

Note that as of late 2016, appc is no longer being actively developed [https://github.com/appc/spec#-disclaimer-], and future versions of rkt will instead natively use OCI formats [https://github.com/rkt/rkt/projects/4].

ACI

The image format defined by appc and used in rkt is the Application Container Image [https://github.com/appc/spec/blob/master/spec/aci.md#app-container-image], or ACI.
An ACI is a simple tarball bundle of a rootfs (containing all the files needed to execute an application) and an Image Manifest, which defines things like default execution parameters and default resource constraints.
ACIs can be built with tools like acbuild [https://github.com/containers/build], actool [https://github.com/appc/spec#building-acis], or goaci [https://github.com/appc/goaci].
Docker images can be converted to ACI using docker2aci [https://github.com/appc/docker2aci], although rkt will do this automatically.

Most parameters defined in an image can be overridden at runtime by rkt. For example, the rkt run command allows users to supply custom exec arguments to an image.

Pods

appc defines the pod [https://github.com/appc/spec/blob/master/spec/pods.md#app-container-pods-pods] as the basic unit of execution.
A pod is a grouping of one or more app images (ACIs), with some additional metadata optionally applied to the pod as a whole - for example, a resource constraint can be applied at the pod level and then forms an “outer bound” for all the applications in the pod.
The images in a pod execute with a shared context, including networking.

A pod in rkt is conceptually identical to a pod as defined in Kubernetes [http://kubernetes.io/docs/user-guide/pods/].

Validating rkt as an appc implementation

rkt implements the two runtime components of the appc specification: the Application Container Executor (ACE) [https://github.com/appc/spec/blob/master/spec/ace.md#app-container-executor] and the Metadata Service [https://github.com/appc/spec/blob/master/spec/ace.md#app-container-metadata-service].
It also uses schema and code from the upstream appc/spec [https://github.com/appc/spec/blob/master/SPEC.md] repo to manipulate ACIs, work with image and pod manifests, and perform image discovery.

To validate that rkt successfully implements the ACE part of the spec, use the App Container validation ACIs [https://github.com/appc/spec/blob/master/README.md#validating-app-container-executors-aces]:

rkt metadata-service & # Make sure metadata service is running
rkt --insecure-options=image run \
 --mds-register \
 --volume=database,kind=host,source=/tmp \
 https://github.com/appc/spec/releases/download/v0.8.10/ace-validator-main.aci \
 https://github.com/appc/spec/releases/download/v0.8.10/ace-validator-sidekick.aci

App Environment

Apps launched by rkt have access to some basic devices and file systems as defined by the App Container spec in the OS-SPEC [https://github.com/appc/spec/blob/master/spec/OS-SPEC.md] section.

In addition to the basic devices and file systems mandated by the App Container spec, rkt gives access to the following files.

/etc/hosts

Support for /etc/hosts is optional in the App Container spec. rkt creates it.

/etc/resolv.conf

/etc/resolv.conf is automatically prepared by rkt.

/run/systemd/journal

Since rkt v1.2.0, rkt gives access to systemd-journald’s sockets in the /run/systemd/journal directory:

	/run/systemd/journal/dev-log

	/run/systemd/journal/socket

	/run/systemd/journal/stdout

/dev/log

Since rkt v1.2.0, if /dev/log does not exist in the image, it will be created as a symlink to /run/systemd/journal/dev-log.

Installing a different version of rkt in CoreOS Container Linux

If a different version of rkt is required than what ships with CoreOS Container Linux, a
oneshot systemd unit can be used to download and install an alternate version
on boot.

The following unit will use curl to download rkt, its signature, and the CoreOS
app signing key. The downloaded rkt is then verified with its signature, and
extracted to /opt/rkt.

[Unit]
Description=rkt installer
Requires=network.target

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/mkdir -p /opt/rkt
ExecStart=/usr/bin/curl --silent -L -o /opt/rkt.tar.gz <rkt-url>
ExecStart=/usr/bin/curl --silent -L -o /opt/rkt.tar.gz.sig <rkt-sig-url>
ExecStart=/usr/bin/curl --silent -L -o /opt/coreos-app-signing-key.gpg https://coreos.com/dist/pubkeys/app-signing-pubkey.gpg
ExecStart=/usr/bin/gpg --keyring /tmp/gpg-keyring --no-default-keyring --import /opt/coreos-app-signing-key.gpg
ExecStart=/usr/bin/gpg --keyring /tmp/gpg-keyring --no-default-keyring --verify /opt/rkt.tar.gz.sig /opt/rkt.tar.gz
ExecStart=/usr/bin/tar --strip-components=1 -xf /opt/rkt.tar.gz -C /opt/rkt

The URLs in this unit must be filled in before the unit is installed. Valid
URLs can be found on rkt’s releases page [https://github.com/rkt/rkt/releases].

This unit should be installed with either ignition [https://coreos.com/ignition/docs/latest/] or a cloud config [https://coreos.com/os/docs/latest/cloud-config.html].
Other units being added can then contain a After=rkt-install.service (or
whatever the service was named) to delay their running until rkt has been
installed.

Installing rkt on popular Linux distributions

	Arch

	CentOS

	Container Linux by CoreOS

	Debian

	Fedora

	Gentoo

	NixOS

	openSUSE

	Ubuntu

	Void

Upstream-maintained packages (manual installation from rkt project)

	rpm-based

	deb-based

Distribution-maintained packages (automatic installation from repositories)

If your distribution packages rkt, then you should generally use their version. However,
if you need a newer version, you may choose to manually install the rkt-provided rpm and deb packages.

Arch

rkt is available in the Community Repository [https://www.archlinux.org/packages/community/x86_64/rkt/] and can be installed using pacman:

sudo pacman -S rkt

CentOS

rkt is available in the CentOS Community Build Service [https://cbs.centos.org/koji/packageinfo?packageID=4464] for CentOS 7.
However, this is not yet ready for production use [https://github.com/rkt/rkt/issues/1305] due to pending systemd upgrade issues.

Container Linux

rkt is an integral part of Container Linux, installed with the operating system.
The Container Linux releases page [https://coreos.com/releases/] lists the version of rkt available in each Container Linux release channel.

If the version of rkt included in Container Linux is too old, it’s fairly trivial to fetch the desired version via a systemd unit.

Debian

rkt is currently packaged in Debian sid [https://packages.debian.org/sid/utils/rkt] (unstable).

sudo apt-get install rkt

If you don’t run sid, or wish for a newer version, you can install manually.

Fedora

Since Fedora version 24, rkt packages are available in the main repository. We recommend using recent Fedora releases or a manually installed package in order to have an up-to-date rkt binary.

sudo dnf install rkt

rkt’s entry in the Fedora package database [https://admin.fedoraproject.org/pkgdb/package/rpms/rkt/] tracks packaging work for this distribution.

Caveat: SELinux

rkt does not work with the SELinux policies currently shipped with Fedora versions 24 and 25.

As a workaround, SELinux can be temporarily disabled:

sudo setenforce Permissive

Or permanently disabled by editing /etc/selinux/config:

SELINUX=permissive

Caveat: firewalld

Fedora uses firewalld [https://fedoraproject.org/wiki/FirewallD] to dynamically define firewall zones.
rkt is not yet fully integrated with firewalld [https://github.com/rkt/rkt/issues/2206].
The default firewalld rules may interfere with the network connectivity of rkt pods.
To work around this, add a firewalld rule to allow pod traffic:

sudo firewall-cmd --add-source=172.16.28.0/24 --zone=trusted

172.16.28.0/24 is the subnet of the default pod network. The command must be adapted when rkt is configured to use a different network with a different subnet.

Gentoo

rkt is packaged for gentoo [https://packages.gentoo.org/packages/app-emulation/rkt] and available via portage.

sudo emerge rkt

NixOS

rkt can be installed on NixOS using the following command:

nix-env -iA rkt

The source for the rkt.nix expression can be found on GitHub [https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/virtualization/rkt/default.nix]

openSUSE

rkt is available in the Virtualization:containers [https://build.opensuse.org/package/show/Virtualization:containers/rkt] project on openSUSE Build Service.
Before installing, the appropriate repository needs to be added (usually Tumbleweed or Leap):

sudo zypper ar -f obs://Virtualization:containers/openSUSE_Tumbleweed/ virtualization_containers
sudo zypper ar -f obs://Virtualization:containers/openSUSE_Leap_42.1/ virtualization_containers

Install rkt using zypper:

sudo zypper in rkt

Ubuntu

rkt is not packaged currently in Ubuntu. Instead, install manually using the
rkt debian package.

Void

rkt is available in the official binary packages [http://www.voidlinux.eu/packages/] for the Void Linux distribution.
The source for these packages is hosted on GitHub [https://github.com/voidlinux/void-packages/tree/master/srcpkgs/rkt].

rkt-maintained packages

As part of the rkt build process, rpm and deb packages are built. If you need to use
the latest rkt version, or your distribution does not bundle rkt, these are available.

Currently the rkt upstream project does not maintain its own repository, so users of these packages must
upgrade manually.

rpm-based

gpg --recv-key 18AD5014C99EF7E3BA5F6CE950BDD3E0FC8A365E
wget https://github.com/rkt/rkt/releases/download/v1.28.1/rkt-1.28.1-1.x86_64.rpm
wget https://github.com/rkt/rkt/releases/download/v1.28.1/rkt-1.28.1-1.x86_64.rpm.asc
gpg --verify rkt-1.28.1-1.x86_64.rpm.asc
sudo rpm -Uvh rkt-1.28.1-1.x86_64.rpm

deb-based

gpg --recv-key 18AD5014C99EF7E3BA5F6CE950BDD3E0FC8A365E
wget https://github.com/rkt/rkt/releases/download/v1.28.1/rkt_1.28.1-1_amd64.deb
wget https://github.com/rkt/rkt/releases/download/v1.28.1/rkt_1.28.1-1_amd64.deb.asc
gpg --verify rkt_1.28.1-1_amd64.deb.asc
sudo dpkg -i rkt_1.28.1-1_amd64.deb

rkt Commands

Work in progress.
Please contribute if you see an area that needs more detail.

Downloading Images (ACIs)

rkt runs applications packaged according to the open-source App Container Image [https://github.com/appc/spec/blob/master/spec/aci.md#app-container-image] specification.
ACIs consist of the root filesystem of the application container, a manifest, and an optional signature.

ACIs are named with a URL-like structure.
This naming scheme allows for a decentralized discovery of ACIs, related signatures and public keys.
rkt uses these hints to execute meta discovery [https://github.com/appc/spec/blob/master/spec/discovery.md#app-container-image-discovery].

	trust

	fetch

Running Pods

rkt can execute ACIs identified by name, hash, local file path, or URL.
If an ACI hasn’t been cached on disk, rkt will attempt to find and download it.
To use rkt’s metadata service [https://github.com/appc/spec/blob/master/spec/ace.md#app-container-metadata-service], enable registration with the --mds-register flag when invoking it.

	run

	stop

	enter

	prepare

	run-prepared

Pod inspection and management

rkt provides subcommands to list, get status, and clean its pods.

	list

	status

	export

	gc

	rm

	cat-manifest

Interacting with the local image store

rkt provides subcommands to list, inspect and export images in its local store.

	image

Metadata Service

The metadata service helps running apps introspect their execution environment and assert their pod identity.

	metadata-service

API Service

The API service allows clients to list and inspect pods and images running under rkt.

	api-service

Misc

	version

	config

Global Options

In addition to the flags used by individual rkt commands, rkt has a set of global options that are applicable to all commands.

Flag	Default	Options	Description
—	—	—	—
--cpuprofile (hidden flag)	‘’	A file path	Write CPU profile to the file
--debug	false	true or false	Prints out more debug information to stderr
--dir	/var/lib/rkt	A directory path	Path to the rkt data directory
--insecure-options	none	none, http, image, tls, pubkey, capabilities, paths, seccomp, all-fetch, all-run, all	
More information below.	Comma-separated list of security features to disable		
--local-config	/etc/rkt	A directory path	Path to the local configuration directory
--memprofile (hidden flag)	‘’	A file path	Write memory profile to the file
--system-config	/usr/lib/rkt	A directory path	Path to the system configuration directory
--trust-keys-from-https	false	true or false	Automatically trust gpg keys fetched from HTTPS (or HTTP if the insecure pubkey option is also specified)
--user-config	‘’	A directory path	Path to the user configuration directory

--insecure-options

	none: All security features are enabled

	http: Allow HTTP connections. Be warned that this will send any credentials as clear text, allowing anybody with access to your network to obtain them. It will also perform no validation of the remote server, making it possible for an attacker to impersonate the remote server. This applies specifically to fetching images, signatures, and gpg pubkeys.

	image: Disables verifying image signatures. If someone is able to replace the image on the server with a modified one or is in a position to impersonate the server, they will be able to force you to run arbitrary code.

	tls: Accept any certificate from the server and any host name in that certificate. This will make it possible for attackers to spoof the remote server and provide malicious images.

	pubkey: Allow fetching pubkeys via insecure connections (via HTTP connections or from servers with unverified certificates). This slightly extends the meaning of the --trust-keys-from-https flag. This will make it possible for an attacker to spoof the remote server, potentially providing fake keys and allowing them to provide container images that have been tampered with.

	capabilities: Gives all capabilities to apps. This allows an attacker that is able to execute code in the container to trivially escalate to root privileges on the host.

	paths: Disables inaccessible and read-only paths. This makes it easier for an attacker who can gain control over a single container to execute code in the host system, potentially allowing them to escape from the container. This also leaks additional information.

	seccomp: Disables seccomp. This increases the attack surface available to an attacker who can gain control over a single container, potentially making it easier for them to escape from the container.

	all-fetch: Disables the following security checks: image, tls, http

	all-run: Disables the following security checks: capabilities, paths, seccomp

	all: Disables all security checks

Logging

By default, rkt will send logs directly to stdout/stderr, allowing them to be captured by the invoking process.
On host systems running systemd, rkt will attempt to integrate with journald on the host.
In this case, the logs can be accessed directly via journalctl.

Accessing logs via journalctl

To read the logs of a running pod, get the pod’s machine name from machinectl:

$ machinectl
MACHINE CLASS SERVICE
rkt-bc3c1451-2e81-45c6-aeb0-807db44e31b4 container rkt

1 machines listed.

or rkt list --full

$ rkt list --full
UUID APP IMAGE NAME IMAGE ID STATE CREATED STARTED NETWORKS
bc3c1451-2e81-45c6-aeb0-807db44e31b4 etcd coreos.com/etcd:v2.3.4 sha512-7f05a10f6d2c running 2016-05-18 10:07:35.312 +0200 CEST 2016-05-18 10:07:35.405 +0200 CEST default:ip4=172.16.28.83
 redis registry-1.docker.io/library/redis:3.2 sha512-6eaaf936bc76

The pod’s machine name will be the pod’s UUID prefixed with rkt-.
Given this machine name, logs can be retrieved by journalctl:

$ journalctl -M rkt-bc3c1451-2e81-45c6-aeb0-807db44e31b4
[...]

To get logs from one app in the pod:

$ journalctl -M rkt-bc3c1451-2e81-45c6-aeb0-807db44e31b4 -t etcd
[...]
$ journalctl -M rkt-bc3c1451-2e81-45c6-aeb0-807db44e31b4 -t redis
[...]

Additionaly, logs can be programmatically accessed via the sd-journal API [https://www.freedesktop.org/software/systemd/man/sd-journal.html].

Currently there are two known main issues with logging in rkt:

	In some rare situations when an application inside the pod is writing to /dev/stdout and /dev/stderr (i.e. nginx) there is no way to obtain logs.
The app should be modified so it will write to stdout or syslog. In the case of nginx the following snippet should be added to /etc/nginx/nginx.conf:

error_log stderr;

http {
 access_log syslog:server=unix:/dev/log main;
 [...]
}

	Some applications, like etcd 3.0, write directly to journald. Such log entries will not be written to stdout or stderr.
These logs can be retrieved by passing the machine ID to journalctl:

$ journalctl -M rkt-bc3c1451-2e81-45c6-aeb0-807db44e31b4

For the specific etcd case, since release 3.1.0-rc.1 it is possible to force emitting logs to stdout via a --log-output=stdout command-line option.

Stopped pod

To read the logs of a stopped pod, use:

journalctl -m _MACHINE_ID=132f9d560e3f4d1eba8668efd488bb62

[...]

On some distributions such as Ubuntu, persistent journal storage is not enabled by default. In this case, it is not possible to get the logs of a stopped pod. Persistent journal storage can be enabled with sudo mkdir /var/log/journal before starting the pods.

Hacking Guide

Overview

This guide contains instructions for those looking to hack on rkt.
For more information on the rkt internals, see the devel documentation.

Building rkt

The easiest way to build rkt is by using the coreos.com/rkt/builder ACI image. See instructions for how to use it in the README at github.com/rkt/rkt-builder [https://github.com/rkt/rkt-builder].

Alternatively, you should be able build rkt on any modern Linux system with Go [https://golang.org/] (1.5+) installed.
For the most part the codebase is self-contained (e.g. all dependencies are vendored), but assembly of the stage1 requires some other tools to be installed on the system.
Please see the list of the build-time dependencies.
Once the dependencies have been satisfied you can build rkt with a default configuration by running the following commands:

git clone https://github.com/rkt/rkt.git
cd rkt
./autogen.sh && ./configure && make

Build verbosity can be controlled with the V variable.
Set V to 0 to have a silent build.
Set V to either 1 or 2 to get short messages about what is being done (level 2 prints more of them).
Set V to 3 to get raw output.
Instead of a number, English words can be used: quiet or silent for level 0, info for level 1, all for level 2 and raw for level 3.
For example, make V=raw is equivalent to make V=3.

To be able to run rkt, please see the list of the run-time dependencies.

Building rkt with Docker

Alternatively, you can build rkt in a Docker container with the following command.
Replace $SRC with the absolute path to your rkt source code:

docker run -v $SRC:/opt/rkt debian:sid /bin/bash -c "cd /opt/rkt && ./scripts/install-deps-debian-sid.sh && ./autogen.sh && ./configure && make"

Building systemd in stage1 from source

By default, rkt gets systemd from a CoreOS Container Linux image to generate stage1.
It’s also possible to build systemd from source.
To do this, use the following configure parameters after running ./autogen.sh:

	--with-stage1-flavors

	--with-stage1-default-flavor (optional)

	--with-stage1-systemd-version

	--with-stage1-systemd-revision (optional)

	--with-stage1-systemd-src

For more details, see configure script parameters documentation.
Example:

./autogen.sh && ./configure --with-stage1-flavors=src --with-stage1-systemd-version=v231 --with-stage1-systemd-revision=master --with-stage1-systemd-src=$HOME/src/systemd && make

Building stage1 with kvm as execution engine

The stage1 kvm image is based on Container Linux, but with additional components for running containers on top of a hypervisor.

To build this stage1 image, pass kvm to --with-stage1-flavors parameter in ./configure

This will generate a stage1 with an embedded kernel and kvmtool, which launches each pod in a separate virtual machine.

Additional build dependencies for the stage1 kvm follow.
If building with docker, these must be added to the apt-get install command.

	wget

	xz-utils

	patch

	bc

	libssl-dev

Alternative stage1 paths

rkt is designed and intended to be modular, using a staged architecture.

rkt run determines the stage1 image it should use via its --stage1-{url,path,name,hash,from-dir} flags.
If this flag is not given to rkt, the stage1 image will default to the settings taken from the configuration.
If those are unset, rkt will fall back to the settings configured when rkt was built from source.
It usually means that rkt will look for a file called stage1-<default flavor>.aci that is in the same directory as the rkt binary itself.

However, a default value can be set for this parameter at build time by setting the option --with-stage1-default-location when invoking ./configure.
It can be set with the paths kind of configuration.
For more details, see configure script parameters documentation and configuration documentation.

rkt expects stage1 images to be signed except in the following cases:

	it is the default stage1 image and it’s in the same directory as the rkt binary

	--stage1-{name,hash} is used and the image is already in the store

	--stage1-{url,path,from-dir} is used and the image is in the default directory configured at build time

Updating the coreos flavor stage1

Follow the instructions on Update coreos flavor stage1.

Managing dependencies

rkt uses glide [https://glide.sh] and glide-vc [https://github.com/sgotti/glide-vc] to manage third-party dependencies.
The build process is crafted to make this transparent to most users (i.e. if you’re just building rkt from source, or modifying any of the codebase without changing dependencies, you should have no need to interact with glide).
But occasionally the need arises to either a) add a new dependency or b) update/remove an existing dependency.

We might want to vendor an application for several reasons:

	it will be used at build-time (like actool to build stage1 images)

	it will be a part of a stage1 image (like CNI plugins for networking)

	it will be used in functional tests (like ACE validator)

Update glide/glide-vc

Ensure you have the latest version of glide and glide-vc available in your PATH.

Add a new dependency

Use the glide tool to add a new dependency. In order to add a dependency to a package i.e. github.com/fizz/buzz for version 1.2.3, execute:

$ glide get github.com/fizz/buzz#v1.2.3
$./scripts/glide-update.sh

Note that although glide does support versions and ranges [https://glide.readthedocs.io/en/latest/versions/] currently it is preferred to pin to concrete versions as described above.

Note: Do not use go get and glide update to add new dependencies. It will cause both glide.lock and glide.yaml files to diverge.

Update existing dependencies

Once in a while new versions of dependencies are available. Entries in the glide.yaml file specify the target version. To update a dependency, edit the appropriate entry and specify the updated target version.

Note: Changing specific entries in glide.yaml does not imply that only those will be updated. Glide will pull potential updates for all dependencies.

To update a vendored dependency to a newer version, first update its target version directly in glade.yaml. The glide update script will then take care of pulling all dependencies and refreshing any updated ones, according to version constraints specified in the YAML manifest.

Note: Glide will pull all dependencies from all referenced repos potentially causing a lot of network traffic.

Once done editing glide.yaml, execute the glide update script:

$./scripts/glide-update.sh

Resolving transitive dependency conflicts

Glide currently has no deterministic mechanism to resolve transitive dependency conflicts. A transitive dependency conflict exists if package A depends on B, and a package C also depends on B, but on a different version.

To resolve this conflict on package C specify the version directly in the glide.yaml file as described above.

Removing an existing dependency

Execute:

$ glide rm github.com/fizz/buzz
$./scripts/glide-update.sh

Errors & Output

rkt attempts to offer consistent and structured error output. To achieve this, we use a couple helper types which we’ll describe below.

Wrapping errors

rkt uses the errwrap package to structure errors. This allows us to manage how we output errors. You can wrap errors by doing the following.

err := funcReturningSomeError()
errwrap.Wrap(errors.New("My new error"), err)

Logging errors

For writing to output rkt uses its own log package which is essentially a wrapper around the golang log package. This is used to write to both stderr and stdout. By doing this, rkt can easily change the way it formats its output.

A few new methods are added to control the output of the wrapped errors. For example, the following outputs an error to stderr.

log := rktlog.Logger(os.Stderr, "rkt", debug)

log.PrintE("a message to accompany the error", err)

There are similar functions named FatalE, PanicE. All the other methods from golang’s log package are available.

Writing to stdout

In order to write to stdout, we also use the rkt log package. If not already set up in your package, one can be created as follows.

stdout := rktlog.Logger(os.Stdout, "", false)

Here, the prefix is an empty string and debug is set to false.

Finishing Up

At this point, you should be good to submit a PR.
As well as a simple sanity check that the code actually builds and tests pass, here are some things to look out for:

	git status Godeps/ should show only a minimal and relevant change (i.e. only the dependencies you actually intended to touch).

	git diff Godeps/ should be free of any changes to import paths within the vendored dependencies

	git diff should show all third-party import paths prefixed with Godeps/_workspace

If something looks awry, restart, pray to your preferred deity, and try again.

Running rkt with KVM stage1

rkt has support for executing pods with KVM hypervisor - LKVM [https://kernel.googlesource.com/pub/scm/linux/kernel/git/will/kvmtool/+/master/README] or QEMU [http://qemu-project.org/Main_Page] as a stage1. rkt employs this alternative stage1 to run a pod within a virtual machine with its own operating system kernel and hypervisor isolation, rather than creating a container using Linux cgroups and namespaces.

The KVM stage1 does not yet implement all of the default stage1’s features and semantics. While the same app container can be executed under isolation by either stage1, it may require different configuration, especially for networking. However, several deployments of the KVM stage1 are operational outside of CoreOS, and we encourage testing of this feature and welcome your contributions.

Getting started

Provided you have hardware virtualization support and the kernel KVM module [http://www.linux-kvm.org/page/Getting_the_kvm_kernel_modules] loaded (refer to your distribution for instructions), you can then run an image like you would normally do with rkt:

sudo rkt run --debug --insecure-options=image --stage1-name=coreos.com/rkt/stage1-kvm:1.28.1 docker://redis

This output is the same you’ll get if you run a container-based rkt.
If you want to see the kernel and boot messages, run rkt with the --debug flag.

You can exit pressing <Ctrl-a x>.

CPU usage

By default, processes will start working on all CPUs if at least one app does not have specfied CPUs.
In the other case, container will be working on aggregate amount of CPUs.

Memory

Currently, the memory allocated to the virtual machine is a sum of memory required by each app in pod and additional 128MB required by system. If memory of some app is not specified, app memory will be set on default value (128MB).

How does it work?

It leverages the work done by Intel with their Clear Containers system [https://lwn.net/Articles/644675/].
Stage1 contains a Linux kernel that is executed under hypervisor (LKVM or QEMU).
This kernel will then start systemd, which in turn will start the applications in the pod.

A KVM-based rkt is very similar to a container-based one, it just uses hypervisor to execute pods instead of systemd-nspawn.

Here’s a comparison of the components involved between a container-based and a KVM based rkt.

Container-based:

host OS
 └─ rkt
 └─ systemd-nspawn
 └─ systemd
 └─ chroot
 └─ user-app1

KVM based:

host OS
 └─ rkt
 └─ hypervisor
 └─ kernel
 └─ systemd
 └─ chroot
 └─ user-app1

Building rkt KVM stage1

For LKVM you can use stage1-kvm.aci or stage1-kvm-lkvm.aci, for QEMU - stage1-kvm-qemu.aci from the official release. You can also build rkt yourself with the right options:

$./autogen.sh && ./configure --with-stage1-flavors=kvm --with-stage1-kvm-hypervisors=lkvm,qemu && make

For more details about configure parameters, see configure script parameters documentation.
This will build the rkt binary and the KVM stage1 aci image in build-rkt-1.28.1+git/target/bin/. Depending on the configuration options, it will be stage1-kvm.aci (if one hypervisor is set), or stage1-kvm-lkvm.aci and stage1-kvm-qemu.aci (if you want to have both images built once).

Additional parameters

The KVM stage1 has some hypervisor specific parameters that can change the execution environment.

Extra kernel command line parameters

Additional Linux kernel’s command line parameters [https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html] can be passed via the environment variable RKT_HYPERVISOR_EXTRA_KERNEL_PARAMS:

sudo RKT_HYPERVISOR_EXTRA_KERNEL_PARAMS="systemd.unified_cgroup_hierarchy=true max_loop=12 possible_cpus=1" \
 rkt run --stage1-name=coreos.com/rkt/stage1-kvm:1.28.1 \
 ...

The three command line parameters above are just examples and they are documented respectively in:

	systemd’s kernel command line parameters [https://www.freedesktop.org/software/systemd/man/kernel-command-line.html]

	Linux’ parameters [https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt]

	Linux’ CPU hotplug [https://github.com/torvalds/linux/blob/master/Documentation/core-api/cpu_hotplug.rst]

Build Configuration

Overview

This file describes all the parameters of the configure script and their possible uses.
For a quick help of available parameters, run ./configure --help.

Parameters for building stage1 flavors

--with-stage1-flavors

This parameter takes a comma-separated list of all the flavors that the build system should assemble.
Depending on a default stage1 image setup, this list is by default either empty or set to coreos,kvm,fly for, respectively, detailed setup and flavor setup.
Note that specifying this parameter does not necessarily mean that rkt will use them in the end.
Available flavors are:

	coreos - it takes systemd and bash from a CoreOS Container Linux PXE image; uses systemd-nspawn

	kvm - it takes systemd, bash and other binaries from a Container Linux PXE image; uses lkvm or qemu

	src - it builds systemd, takes bash from the host at build time; uses built systemd-nspawn

	host - it takes systemd and bash from host at runtime; uses systemd-nspawn from the host

	fly - chroot-only approach for single-application minimal isolation containers; native Go implementation

The host flavor is probably the best suited flavor for distributions that have strict rules about software sources.

--with-stage1-flavors-version-override

This parameter takes a version number to become the version of all the built stage1 flavors.
Normally, without this parameter, the images have the same version as rkt itself.
This parameter may be useful for distributions that often provide patched versions of upstream software without changing major/minor/patch version number, but instead add a numeric suffix.
An example usage could be passing --with-stage1-flavors-version-override=0.12.0-2, so the new image will have a version 0.12.0-2 instead of 0.12.0.
This parameter also affects the default stage1 image version in flavor setup.

Parameters for setting up default stage1 image

The parameters described below affect the handling of rkt’s default stage1 image.
rkt first tries to find the stage1 image in the store by using the default stage1 image name and version.
If this fails, rkt will try to fetch the image into the store from the default stage1 image location.

There are two mutually exclusive ways to specify a default stage1 image name and version:

	flavor setup

	detailed setup

Flavor setup

Flavor setup has only one parameter.
This kind of setup is rather a convenience wrapper around the detailed setup.

--with-stage1-default-flavor

It takes a name of the flavor of the stage1 image we build and, based on that, it sets up the default stage1 image name and version.
Default stage1 image in this case is often something like coreos.com/rkt/stage1-

 Running rkt with the fly stage1

Running rkt with the fly stage1

The fly stage1 is an alternative stage1 that runs a single-application ACI with only chroot-isolation.

Motivation

The motivation of the fly feature is to add the ability to run applications with full privileges on the host but still benefit from the image management and discovery from rkt.
The Kubernetes kubelet [http://kubernetes.io/docs/admin/kubelet/] is one candidate for rkt fly.

How does it work?

In comparison to the default stage1, there is no process manager involved in the stage1.
This a visual illustration for the differences in the process tree between the default and the fly stage1:

stage1-coreos.aci:

host OS
 └─ rkt
 └─ systemd-nspawn
 └─ systemd
 └─ chroot
 └─ user-app1

stage1-fly.aci:

host OS
 └─ rkt
 └─ chroot
 └─ user-app1

The rkt application sets up bind mounts for /dev, /proc, /sys, and the user-provided volumes.
In addition to the bind mounts, an additional tmpfs mount is done at /tmp.
After the mounts are set up, rkt chroots to the application’s RootFS and finally executes the application.

Mount propagation modes

The fly stage1 makes use of Linux mount propagation modes [https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt].
If a volume source path is a mountpoint on the host, this mountpoint is made recursively shared before the host path is mounted on the target path in the container.
Hence, changes to the mounts inside the container will be propagated back to the host.

The bind mounts for /dev, /proc, and /sys are done automatically and are recursive, because their hierarchy contains mounts which also need to be available for the container to function properly.
User-provided volumes are not mounted recursively.
This is a safety measure to prevent system crashes when multiple containers are started that mount / into the container.

Getting started

You can either use stage1-fly.aci from the official release, or build rkt yourself with the right options:

$./autogen.sh && ./configure --with-stage1-flavors=fly && make

For more details about configure parameters, see the configure script parameters documentation.
This will build the rkt binary and the stage1-fly.aci in build-rkt-1.28.1+git/bin/.

Selecting stage1 at runtime

Here is a quick example of how to use a container with the official fly stage1:

rkt run --stage1-name=coreos.com/rkt/stage1-fly:1.28.1 coreos.com/etcd:v2.2.5

If the image is not in the store, --stage1-name will perform discovery and fetch the image.

Notes on isolation and security

By design, the fly stage1 does not provide the same isolaton and security features as the default stage1.

Specifically, the following constraints are not available when using the fly stage1:

	network namespace isolation

	CPU isolators

	Memory isolators

	CAPABILITY bounding

	SELinux

Providing additional isolation with systemd

When using systemd on the host it is possible to wrap rkt with a systemd unit file to provide additional isolation.
For more information please consult the systemd manual.

	systemd.resource-control [http://www.freedesktop.org/software/systemd/man/systemd.resource-control.html]

	systemd.directives [http://www.freedesktop.org/software/systemd/man/systemd.directives.html]

 Using rkt with systemd

Using rkt with systemd

rkt is designed to cooperate with init systems, like systemd [http://www.freedesktop.org/wiki/Software/systemd/]. rkt implements a simple CLI that directly executes processes, and does not interpose a long-running daemon, so the lifecycle of rkt pods can be directly managed by systemd. Standard systemd idioms like systemctl start and systemctl stop work out of the box.

In the shell excerpts below, a # prompt indicates commands that require root privileges, while the $ prompt denotes commands issued as an unprivileged user.

systemd-run

The systemd-run [http://www.freedesktop.org/software/systemd/man/systemd-run.html] utility is a convenient shortcut for testing a service before making it permanent in a unit file. To start a “daemonized” container that forks the container processes into the background, wrap the invocation of rkt with systemd-run:

systemd-run --slice=machine rkt run coreos.com/etcd:v2.2.5
Running as unit run-29486.service.

The --slice=machine option to systemd-run places the service in machine.slice rather than the host’s system.slice, isolating containers in their own cgroup area.

Invoking a rkt container through systemd-run in this way creates a transient service unit that can be managed with the usual systemd tools:

$ systemctl status run-29486.service
● run-29486.service - /bin/rkt run coreos.com/etcd:v2.2.5
 Loaded: loaded (/run/systemd/system/run-29486.service; static; vendor preset: disabled)
 Drop-In: /run/systemd/system/run-29486.service.d
 └─50-Description.conf, 50-ExecStart.conf, 50-Slice.conf
 Active: active (running) since Wed 2016-02-24 12:50:20 CET; 27s ago
 Main PID: 29487 (ld-linux-x86-64)
 Memory: 36.1M
 CPU: 1.467s
 CGroup: /machine.slice/run-29486.service
 ├─29487 stage1/rootfs/usr/lib/ld-linux-x86-64.so.2 stage1/rootfs/usr/bin/systemd-nspawn --boot -Zsystem_u:system_r:svirt_lxc_net_t:s0:c46...
 ├─29535 /usr/lib/systemd/systemd --default-standard-output=tty --log-target=null --log-level=warning --show-status=0
 └─system.slice
 ├─etcd.service
 │ └─29544 /etcd
 └─systemd-journald.service
 └─29539 /usr/lib/systemd/systemd-journald

Since every pod is registered with machined [https://wiki.freedesktop.org/www/Software/systemd/machined/] with a machine name of the form rkt-$UUID, the systemd tools can inspect pod logs, or stop and restart pod “machines”. Use the machinectl tool to print the list of rkt pods:

$ machinectl list
MACHINE CLASS SERVICE
rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 container nspawn

1 machines listed.

Given the name of this rkt machine, journalctl can inspect its logs, or machinectl can shut it down:

journalctl -M rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23
...
Feb 24 12:50:22 rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 etcd[4]: 2016-02-24 11:50:22.518030 I | raft: ce2a822cea30bfca received vote from ce2a822cea30bfca at term 2
Feb 24 12:50:22 rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 etcd[4]: 2016-02-24 11:50:22.518073 I | raft: ce2a822cea30bfca became leader at term 2
Feb 24 12:50:22 rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 etcd[4]: 2016-02-24 11:50:22.518086 I | raft: raft.node: ce2a822cea30bfca elected leader ce2a822cea30bfca at te
Feb 24 12:50:22 rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 etcd[4]: 2016-02-24 11:50:22.518720 I | etcdserver: published {Name:default ClientURLs:[http://localhost:2379 h
Feb 24 12:50:22 rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 etcd[4]: 2016-02-24 11:50:22.518955 I | etcdserver: setting up the initial cluster version to 2.2
Feb 24 12:50:22 rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23 etcd[4]: 2016-02-24 11:50:22.521680 N | etcdserver: set the initial cluster version to 2.2
machinectl poweroff rkt-2b0b2cec-8f63-4451-9431-9f8e9b265a23
$ machinectl list
MACHINE CLASS SERVICE

0 machines listed.

Note that journald integration is only supported if systemd is compiled with xz compression enabled. To inspect this, use systemctl:

$ systemctl --version
systemd v231
[...] +XZ [...]

If the output contains -XZ, journal entries will not be available.

Managing pods as systemd services

Notifications

systemd inside stage1 can notify systemd on the host that it is ready, to make sure that stage1 systemd send the notification at the right time you can use the sd_notify [https://www.freedesktop.org/software/systemd/man/sd_notify.html] mechanism.
To make use of this feature, you need to set the annotation appc.io/executor/supports-systemd-notify to true in the image manifest whenever the app supports sd_notify (see example manifest below).
If you build your image with acbuild [https://github.com/containers/build] you can use the command: acbuild annotation add appc.io/executor/supports-systemd-notify true.

{
 "acKind": "ImageManifest",
 "acVersion": "0.8.4",
 "name": "coreos.com/etcd",
 ...
 "app": {
 "exec": [
 "/etcd"
],
 ...
 },
 "annotations": [
 "name": "appc.io/executor/supports-systemd-notify",
 "value": "true"
]
}

This feature is always available when using the “coreos” stage1 flavor.
If you use the “host” stage1 flavor (e.g. Fedora RPM or Debian deb package), you will need systemd >= v231.
To verify how it works, run in a terminal the command: sudo systemd-run --unit=test --service-type=notify rkt run --insecure-options=image /path/to/your/app/image, then periodically check the status with systemctl status test.

If the pod uses a stage1 image with systemd v231 (or greater), then the pod will be seen active form the host when systemd inside stage1 will reach default target.
Instead, before it was marked as active as soon as it started.
In this way it is possible to easily set up dependencies between pods and host services.
Moreover, using SdNotify() [https://github.com/coreos/go-systemd/blob/master/daemon/sdnotify.go] in the application it is possible to make the pod marked as ready when all the apps or a particular one is ready.
For more information check systemd services unit [https://www.freedesktop.org/software/systemd/man/systemd.unit.html] documentation.
Below there is a simple example of an app using the systemd notification mechanism via go-systemd [https://github.com/coreos/go-systemd] binding library.

package main

import (
 "log"
 "net"
 "net/http"

 "github.com/coreos/go-systemd/daemon"
)

func main() {
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 log.Printf("request from %v\n", r.RemoteAddr)
 w.Write([]byte("hello\n"))
 })
 ln, err := net.Listen("tcp", ":5000")
 if err != nil {
 log.Fatalf("Listen failed: %s", err)
 }
 sent, err := daemon.SdNotify(true, "READY=1")
 if err != nil {
 log.Fatalf("Notification failed: %s", err)
 }
 if !sent {
 log.Fatalf("Notification not supported: %s", err)
 }
 log.Fatal(http.Serve(ln, nil))
}

You can run an app that supports sd_notify() with this command:

systemd-run --slice=machine --service-type=notify rkt run coreos.com/etcd:v2.2.5
Running as unit run-29486.service.

Simple Unit File

The following is a simple example of a unit file using rkt to run an etcd instance under systemd service management:

[Unit]
Description=etcd

[Service]
Slice=machine.slice
ExecStart=/usr/bin/rkt run coreos.com/etcd:v2.2.5
KillMode=mixed
Restart=always

This unit can now be managed using the standard systemctl commands:

systemctl start etcd.service
systemctl stop etcd.service
systemctl restart etcd.service
systemctl enable etcd.service
systemctl disable etcd.service

Note that no ExecStop clause is required. Setting KillMode=mixed [http://www.freedesktop.org/software/systemd/man/systemd.kill.html#KillMode=] means that running systemctl stop etcd.service will send SIGTERM to stage1‘s systemd, which in turn will initiate orderly shutdown inside the pod. Systemd is additionally able to send the cleanup SIGKILL to any lingering service processes, after a timeout. This comprises complete pod lifecycle management with familiar, well-known system init tools.

Advanced Unit File

A more advanced unit example takes advantage of a few convenient systemd features:

	Inheriting environment variables specified in the unit with --inherit-env. This feature helps keep units concise, instead of layering on many flags to rkt run.

	Using the dependency graph to start our pod after networking has come online. This is helpful if your application requires outside connectivity to fetch remote configuration (for example, from etcd).

	Set resource limits for this rkt pod. This can also be done in the unit file, rather than flagged to rkt run.

	Set ExecStopPost to invoke rkt gc --mark-only to record the timestamp when the pod exits.
(Run rkt gc --help to see more details about this flag).
After running rkt gc --mark-only, the timestamp can be retrieved from rkt API service in pod’s gc_marked_at field.
The timestamp can be treated as the finished time of the pod.

Here is what it looks like all together:

[Unit]
Metadata
Description=MyApp
Documentation=https://myapp.com/docs/1.3.4
Wait for networking
Requires=network-online.target
After=network-online.target

[Service]
Slice=machine.slice
Resource limits
Delegate=true
CPUShares=512
MemoryLimit=1G
Env vars
Environment=HTTP_PROXY=192.0.2.3:5000
Environment=STORAGE_PATH=/opt/myapp
Environment=TMPDIR=/var/tmp
Fetch the app (not strictly required, `rkt run` will fetch the image if there is not one)
ExecStartPre=/usr/bin/rkt fetch myapp.com/myapp-1.3.4
Start the app
ExecStart=/usr/bin/rkt run --inherit-env --port=http:8888 myapp.com/myapp-1.3.4
ExecStopPost=/usr/bin/rkt gc --mark-only
KillMode=mixed
Restart=always

rkt must be the main process of the service in order to support isolators [https://github.com/appc/spec/blob/master/spec/ace.md#isolators] correctly and to be well-integrated with systemd-machined [http://www.freedesktop.org/software/systemd/man/systemd-machined.service.html]. To ensure that rkt is the main process of the service, the pattern /bin/sh -c "foo ; rkt run ..." should be avoided, because in that case the main process is sh.

In most cases, the parameters Environment= and ExecStartPre= can simply be used instead of starting a shell. If shell invocation is unavoidable, use exec to ensure rkt replaces the preceding shell process:

ExecStart=/bin/sh -c "foo ; exec rkt run ..."

Resource restrictions (CPU, IO, Memory)

rkt inherits resource limits configured in the systemd service unit file. The systemd documentation explains various execution environment [https://www.freedesktop.org/software/systemd/man/systemd.exec.html], and resource control [https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html] settings to restrict the CPU, IO, and memory resources.

For example to restrict the CPU time quota, configure the corresponding CPUQuota [https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html#CPUQuota=] setting:

[Service]
ExecStart=/usr/bin/rkt run s-urbaniak.github.io/images/stress:0.0.1
CPUQuota=30%

$ ps -p <PID> -o %cpu%
CPU
30.0

Moreover to pin the rkt pod to certain CPUs, configure the corresponding CPUAffinity [https://www.freedesktop.org/software/systemd/man/systemd.exec.html#CPUAffinity=] setting:

[Service]
ExecStart=/usr/bin/rkt run s-urbaniak.github.io/images/stress:0.0.1
CPUAffinity=0,3

$ top
Tasks: 235 total, 1 running, 234 sleeping, 0 stopped, 0 zombie
%Cpu0 : 100.0/0.0 100[||
%Cpu1 : 6.0/0.7 7[|||
%Cpu2 : 0.7/0.0 1[
%Cpu3 : 100.0/0.0 100[||
GiB Mem : 25.7/19.484 [
GiB Swap: 0.0/8.000 [

 PID USER PR NI VIRT RES %CPU %MEM TIME+ S COMMAND
11684 root 20 0 3.6m 1.1m 200.0 0.0 8:58.63 S stress

Socket-activated service

rkt supports socket-activated services [http://www.freedesktop.org/software/systemd/man/sd_listen_fds.html]. This means systemd will listen on a port on behalf of a container, and start the container when receiving a connection. An application needs to be able to accept sockets from systemd’s native socket passing interface in order to handle socket activation.

To make socket activation work, add a socket-activated port [https://github.com/appc/spec/blob/master/spec/aci.md#image-manifest-schema] to the app container manifest:

...
{
...
 "app": {
 ...
 "ports": [
 {
 "name": "80-tcp",
 "protocol": "tcp",
 "port": 80,
 "count": 1,
 "socketActivated": true
 }
]
 }
}

Then you will need a pair of .service and .socket unit files.

In this example, we want to use the port 8080 on the host instead of the app’s default 80, so we use rkt’s --port option to override it.

my-socket-activated-app.socket
[Unit]
Description=My socket-activated app's socket

[Socket]
ListenStream=8080

my-socket-activated-app.service
[Unit]
Description=My socket-activated app

[Service]
ExecStart=/usr/bin/rkt run --port 80-tcp:8080 myapp.com/my-socket-activated-app:v1.0
KillMode=mixed

Finally, start the socket unit:

systemctl start my-socket-activated-app.socket
$ systemctl status my-socket-activated-app.socket
● my-socket-activated-app.socket - My socket-activated app's socket
 Loaded: loaded (/etc/systemd/system/my-socket-activated-app.socket; static; vendor preset: disabled)
 Active: active (listening) since Thu 2015-07-30 12:24:50 CEST; 2s ago
 Listen: [::]:8080 (Stream)

Jul 30 12:24:50 locke-work systemd[1]: Listening on My socket-activated app's socket.

Now, a new connection to port 8080 will start your container to handle the request.

Bidirectionally proxy local sockets to another (possibly remote) socket.

rkt also supports the socket-proxyd service [https://www.freedesktop.org/software/systemd/man/systemd-socket-proxyd.html]. Much like socket activation, with socket-proxyd systemd provides a listener on a given port on behalf of a container, and starts the container when a connection is received. Socket-proxy listening can be useful in environments that lack native support for socket activation. The LKVM stage1 flavor is an example of such an environment.

To set up socket proxyd, create a network template consisting of three units, like the example below. This example uses the redis app and the PTP network template in /etc/rkt/net.d/ptp0.conf:

{
 "name": "ptp0",
 "type": "ptp",
 "ipMasq": true,
 "ipam": {
 "type": "host-local",
 "subnet": "172.16.28.0/24",
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
}

rkt-redis.service
[Unit]
Description=Socket-proxyd redis server

[Service]
ExecStart=/usr/bin/rkt --insecure-options=image run --net="ptp:IP=172.16.28.101" docker://redis
KillMode=process

Note that you have to specify IP manually in systemd unit.

Then you will need a pair of .service and .socket unit files.

We want to use the port 6379 on the localhost instead of the remote container IP,
so we use next systemd unit to override it.

proxy-to-rkt-redis.service
[Unit]
Requires=rkt-redis.service
After=rkt-redis.service

[Service]
ExecStart=/usr/lib/systemd/systemd-socket-proxyd 172.16.28.101:6379

Lastly the related socket unit,

proxy-to-rkt-redis.socket
[Socket]
ListenStream=6371

[Install]
WantedBy=sockets.target

Finally, start the socket unit:

systemctl enable proxy-to-redis.socket
$ sudo systemctl start proxy-to-redis.socket
● proxy-to-rkt-redis.socket
 Loaded: loaded (/etc/systemd/system/proxy-to-rkt-redis.socket; enabled; vendor preset: disabled)
 Active: active (listening) since Mon 2016-03-07 11:53:32 CET; 8s ago
 Listen: [::]:6371 (Stream)

Mar 07 11:53:32 user-host systemd[1]: Listening on proxy-to-rkt-redis.socket.
Mar 07 11:53:32 user-host systemd[1]: Starting proxy-to-rkt-redis.socket.

Now, a new connection to localhost port 6371 will start your container with redis, to handle the request.

$ curl http://localhost:6371/

Other tools for managing pods

Let us assume the service from the simple example unit file, above, is started on the host.

ps auxf

The snippet below taken from output of ps auxf shows several things:

	rkt execs stage1’s systemd-nspawn instead of using fork-exec technique. That is why rkt itself is not listed by ps.

	systemd-nspawn runs a typical boot sequence - it spawns systemd inside the container, which in turn spawns our desired service(s).

	There can be also other services running, which may be systemd-specific, like systemd-journald.

$ ps auxf
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 7258 0.2 0.0 19680 2664 ? Ss 12:38 0:02 stage1/rootfs/usr/lib/ld-linux-x86-64.so.2 stage1/rootfs/usr/bin/systemd-nspawn --boot --register=true --link-journal=try-guest --quiet --keep-unit --uuid=6d0d9608-a744-4333-be21-942145a97a5a --machine=rkt-6d0d9608-a744-4333-be21-942145a97a5a --directory=stage1/rootfs -- --default-standard-output=tty --log-target=null --log-level=warning --show-status=0
root 7275 0.0 0.0 27348 4316 ? Ss 12:38 0:00 _ /usr/lib/systemd/systemd --default-standard-output=tty --log-target=null --log-level=warning --show-status=0
root 7277 0.0 0.0 23832 6100 ? Ss 12:38 0:00 _ /usr/lib/systemd/systemd-journald
root 7343 0.3 0.0 10652 7332 ? Ssl 12:38 0:04 _ /etcd

systemd-cgls

The systemd-cgls command prints the list of cgroups active on the system. The inner system.slice shown in the excerpt below is a cgroup in rkt’s stage1, below which an in-container systemd has been started to shepherd pod apps with complete process lifecycle management:

$ systemd-cgls
├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 22
├─machine.slice
│ └─etcd.service
│ ├─1204 stage1/rootfs/usr/lib/ld-linux-x86-64.so.2 stage1/rootfs/usr/bin/s...
│ ├─1421 /usr/lib/systemd/systemd --default-standard-output=tty --log-targe...
│ └─system.slice
│ ├─etcd.service
│ │ └─1436 /etcd
│ └─systemd-journald.service
│ └─1428 /usr/lib/systemd/systemd-journald

systemd-cgls –all

To display all active cgroups, use the --all flag. This will show two cgroups for mount in the host’s system.slice. One mount cgroup is for the stage1 root filesystem, the other for the stage2 root (the pod’s filesystem). Inside the pod’s system.slice there are more mount cgroups – mostly for bind mounts of standard /dev-tree device files.

$ systemd-cgls --all
├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 22
├─machine.slice
│ └─etcd.service
│ ├─1204 stage1/rootfs/usr/lib/ld-linux-x86-64.so.2 stage1/rootfs/usr/bin/s...
│ ├─1421 /usr/lib/systemd/systemd --default-standard-output=tty --log-targe...
│ └─system.slice
│ ├─proc-sys-kernel-random-boot_id.mount
│ ├─opt-stage2-etcd-rootfs-proc-kmsg.mount
│ ├─opt-stage2-etcd-rootfs-sys.mount
│ ├─opt-stage2-etcd-rootfs-dev-shm.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-perf_event.mount
│ ├─etcd.service
│ │ └─1436 /etcd
│ ├─opt-stage2-etcd-rootfs-proc-sys-kernel-random-boot_id.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-cpu\x2ccpuacct.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-devices.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-freezer.mount
│ ├─shutdown.service
│ ├─-.mount
│ ├─opt-stage2-etcd-rootfs-data\x2ddir.mount
│ ├─system-prepare\x2dapp.slice
│ ├─tmp.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-cpuset.mount
│ ├─opt-stage2-etcd-rootfs-proc.mount
│ ├─systemd-journald.service
│ │ └─1428 /usr/lib/systemd/systemd-journald
│ ├─opt-stage2-etcd-rootfs.mount
│ ├─opt-stage2-etcd-rootfs-dev-random.mount
│ ├─opt-stage2-etcd-rootfs-dev-pts.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup.mount
│ ├─run-systemd-nspawn-incoming.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-systemd-machine.slice-etcd.service.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-memory-machine.slice-etcd.service-system.slice-etcd.service-cgroup.procs.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-blkio.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-net_cls\x2cnet_prio.mount
│ ├─opt-stage2-etcd-rootfs-dev-net-tun.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-memory-machine.slice-etcd.service-system.slice-etcd.service-memory.limit_in_bytes.mount
│ ├─opt-stage2-etcd-rootfs-dev-tty.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-pids.mount
│ ├─reaper-etcd.service
│ ├─opt-stage2-etcd-rootfs-sys-fs-selinux.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-memory.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-cpu\x2ccpuacct-machine.slice-etcd.service-system.slice-etcd.service-cpu.cfs_quota_us.mount
│ ├─opt-stage2-etcd-rootfs-dev-urandom.mount
│ ├─opt-stage2-etcd-rootfs-dev-zero.mount
│ ├─opt-stage2-etcd-rootfs-dev-null.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-systemd.mount
│ ├─opt-stage2-etcd-rootfs-dev-console.mount
│ ├─opt-stage2-etcd-rootfs-dev-full.mount
│ ├─opt-stage2-etcd-rootfs-sys-fs-cgroup-cpu\x2ccpuacct-machine.slice-etcd.service-system.slice-etcd.service-cgroup.procs.mount
│ ├─opt-stage2-etcd-rootfs-proc-sys.mount
│ └─opt-stage2-etcd-rootfs-sys-fs-cgroup-hugetlb.mount

 Seccomp Isolators Guide

Seccomp Isolators Guide

This document is a walk-through guide describing how to use rkt isolators for
Linux seccomp filtering [https://lwn.net/Articles/656307/].

	About Seccomp

	Predefined Seccomp Filters

	Seccomp Isolators

	Usage Example

	Overriding Seccomp Filters

	Recommendations

About seccomp

Linux seccomp (short for SECure COMputing) filtering allows one to specify which
system calls a process should be allowed to invoke, reducing the kernel surface
exposed to applications.
This provides a clearly defined mechanism to build sandboxed environments, where
processes can run having access only to a specific reduced set of system calls.

In the context of containers, seccomp filtering is useful for:

	Restricting applications from invoking syscalls that can affect the host

	Reducing kernel attack surface in case of security bugs

For more details on how Linux seccomp filtering works, see
seccomp(2) [http://man7.org/linux/man-pages/man2/seccomp.2.html].

Predefined seccomp filters

By default, rkt comes with a set of predefined filtering groups that can be
used to quickly build sandboxed environments for containerized applications.
Each set is simply a reference to a group of syscalls, covering a single
functional area or kernel subsystem. They can be further combined to
build more complex filters, either by blacklisting or by whitelisting specific
system calls. To distinguish these predefined groups from real syscall names,
wildcard labels are prefixed with a @ symbols and are namespaced.

The App Container Spec (appc) defines
two groups [https://github.com/appc/spec/blob/master/spec/ace.md#linux-isolators]:

	@appc.io/all represents the set of all available syscalls.

	@appc.io/empty represents the empty set.

rkt provides two default groups for generic usage:

	@rkt/default-blacklist represents a broad-scope filter than can be used for generic blacklisting

	@rkt/default-whitelist represents a broad-scope filter than can be used for generic whitelisting

For compatibility reasons, two groups are provided mirroring default Docker profiles [https://docs.docker.com/engine/security/seccomp/]:

	@docker/default-blacklist

	@docker/default-whitelist

When using stage1 images with systemd >= v231, some
predefined groups [https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SystemCallFilter=]
are also available:

	@systemd/clock for syscalls manipulating the system clock

	@systemd/default-whitelist for a generic set of typically whitelisted syscalls

	@systemd/mount for filesystem mounting and unmounting

	@systemd/network-io for socket I/O operationgs

	@systemd/obsolete for unusual, obsolete or unimplemented syscalls

	@systemd/privileged for syscalls which need super-user syscalls

	@systemd/process for syscalls acting on process control, execution and namespacing

	@systemd/raw-io for raw I/O port access

When no seccomp filtering is specified, by default rkt whitelists all the generic
syscalls typically needed by applications for common operations. This is
the same set defined by @rkt/default-whitelist.

The default set is tailored to stop applications from performing a large
variety of privileged actions, while not impacting their normal behavior.
Operations which are typically not needed in containers and which may
impact host state, eg. invoking umount(2) [http://man7.org/linux/man-pages/man2/umount.2.html], are denied in this way.

However, this default set is mostly meant as a safety precaution against erratic
and misbehaving applications, and will not suffice against tailored attacks.
As such, it is recommended to fine-tune seccomp filtering using one of the
customizable isolators available in rkt.

Seccomp Isolators

When running Linux containers, rkt provides two mutually exclusive isolators
to define a seccomp filter for an application:

	os/linux/seccomp-retain-set

	os/linux/seccomp-remove-set

Those isolators cover different use-cases and employ different techniques to
achieve the same goal of limiting available syscalls. As such, they cannot
be used together at the same time, and recommended usage varies on a
case-by-case basis.

Operation mode

Seccomp isolators work by defining a set of syscalls than can be either blocked
(“remove-set”) or allowed (“retain-set”). Once an application tries to invoke
a blocked syscall, the kernel will deny this operation and the application will
be notified about the failure.

By default, invoking blocked syscalls will result in the application being
immediately terminated with a SIGSYS signal. This behavior can be tweaked by
returning a specific error code (“errno”) to the application instead of
terminating it.

For both isolators, this can be customized by specifying an additional errno
parameter with the desired symbolic errno name. For a list of errno labels, check
the reference [http://man7.org/linux/man-pages/man3/errno.3.html] at man 3 errno.

Retain-set

os/linux/seccomp-retain-set allows for an additive approach to build a seccomp
filter: applications will not able to use any syscalls, except the ones
listed in this isolator.

This whitelisting approach is useful for completely locking down environments
and whenever application requirements (in terms of syscalls) are
well-defined in advance. It allows one to ensure that exactly and only the
specified syscalls could ever be used.

For example, the “retain-set” for a typical network application will include
entries for generic POSIX operations (available in @systemd/default-whitelist),
socket operations (@systemd/network-io) and reacting to I/O
events (@systemd/io-event).

Remove-set

os/linux/seccomp-remove-set tackles syscalls in a subtractive way:
starting from all available syscalls, single entries can be forbidden in order
to prevent specific actions.

This blacklisting approach is useful to somehow limit applications which have
broad requirements in terms of syscalls, in order to deny access to some clearly
unused but potentially exploitable syscalls.

For example, an application that will need to perform multiple operations but is
known to never touch mountpoints could have @systemd/mount specified in its
“remove-set”.

Usage Example

The goal of these examples is to show how to build ACI images with acbuild [https://github.com/containers/build],
where some syscalls are either explicitly blocked or allowed.
For simplicity, the starting point will be a bare Alpine Linux image which
ships with ping and umount commands (from busybox). Those
commands respectively requires socket(2) [http://man7.org/linux/man-pages/man2/socket.2.html] and umount(2) [http://man7.org/linux/man-pages/man2/umount.2.html] syscalls in order to
perform privileged operations.
To block their usage, a syscalls filter can be installed via
os/linux/seccomp-remove-set or os/linux/seccomp-retain-set; both approaches
are shown here.

Blacklisting specific syscalls

This example shows how to block socket operation (e.g. with ping), by removing
socket() from the set of allowed syscalls.

First, a local image is built with an explicit “remove-set” isolator.
This set contains the syscalls that need to be forbidden in order to block
socket setup:

$ acbuild begin
$ acbuild set-name localhost/seccomp-remove-set-example
$ acbuild dependency add quay.io/coreos/alpine-sh
$ acbuild set-exec -- /bin/sh
$ echo '{ "set": ["@rkt/default-blacklist", "socket"] }' | acbuild isolator add "os/linux/seccomp-remove-set" -
$ acbuild write seccomp-remove-set-example.aci
$ acbuild end

Once properly built, this image can be run in order to check that ping usage is
now blocked by the seccomp filter. At the same time, the default blacklist will
also block other dangerous syscalls like umount(2):

$ sudo rkt run --interactive --insecure-options=image seccomp-remove-set-example.aci
image: using image from file stage1-coreos.aci
image: using image from file seccomp-remove-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # ping -c1 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
Bad system call

/ # umount /proc/bus/
Bad system call

This means that socket(2) and umount(2) have been both effectively disabled
inside the container.

Allowing specific syscalls

In contrast to the example above, this one shows how to allow some operations
only (e.g. network communication via ping), by whitelisting all required
syscalls. This means that syscalls outside of this set will be blocked.

First, a local image is built with an explicit “retain-set” isolator.
This set contains the rkt wildcard “default-whitelist” (which already provides
all socket-related entries), plus some custom syscalls (e.g. umount(2)) which
are typically not allowed:

$ acbuild begin
$ acbuild set-name localhost/seccomp-retain-set-example
$ acbuild dependency add quay.io/coreos/alpine-sh
$ acbuild set-exec -- /bin/sh
$ echo '{ "set": ["@rkt/default-whitelist", "umount", "umount2"] }' | acbuild isolator add "os/linux/seccomp-retain-set" -
$ acbuild write seccomp-retain-set-example.aci
$ acbuild end

Once run, it can be easily verified that both ping and umount are now
functional inside the container. These operations also require additional
capabilities to be retained in order to work:

$ sudo rkt run --interactive --insecure-options=image seccomp-retain-set-example.aci --caps-retain=CAP_SYS_ADMIN,CAP_NET_RAW
image: using image from file stage1-coreos.aci
image: using image from file seccomp-retain-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: seq=0 ttl=41 time=24.910 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 24.910/24.910/24.910 ms

/ # mount | grep /proc/bus
proc on /proc/bus type proc (ro,nosuid,nodev,noexec,relatime)
/ # umount /proc/bus
/ # mount | grep /proc/bus

However, others syscalls are still not available to the application.
For example, trying to set the time will result in a failure due to invoking
non-whitelisted syscalls:

$ sudo rkt run --interactive --insecure-options=image seccomp-retain-set-example.aci
image: using image from file stage1-coreos.aci
image: using image from file seccomp-retain-set-example.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # adjtimex -f 0
Bad system call

Overriding Seccomp Filters

Seccomp filters are typically defined when creating images, as they are tightly
linked to specific app requirements. However, image consumers may need to further
tweak/restrict the set of available syscalls in specific local scenarios.
This can be done either by permanently patching the manifest of specific images,
or by overriding seccomp isolators with command line options.

Patching images

Image manifests can be manipulated manually, by unpacking the image and editing
the manifest file, or with helper tools like actool [https://github.com/appc/spec#building-acis].
To override an image’s pre-defined syscalls set, just replace the existing seccomp
isolators in the image with new isolators defining the desired syscalls.

The patch-manifest subcommand to actool manipulates the syscalls sets
defined in an image.
actool patch-manifest -seccomp-mode=... -seccomp-set=... options
can be used together to override any seccomp filters by specifying a new mode
(retain or reset), an optional custom errno, and a set of syscalls to filter.
These commands take an input image, modify any existing seccomp isolators, and
write the changes to an output image, as shown in the example:

$ actool cat-manifest seccomp-retain-set-example.aci
...
 "isolators": [
 {
 "name": "os/linux/seccomp-retain-set",
 "value": {
 "set": [
 "@rkt/default-whitelist",
 "umount",
 "umount2"
]
 }
 }
]
...

$ actool patch-manifest -seccomp-mode=retain,errno=ENOSYS -seccomp-set=@rkt/default-whitelist seccomp-retain-set-example.aci seccomp-retain-set-patched.aci

$ actool cat-manifest seccomp-retain-set-patched.aci
...
 "isolators": [
 {
 "name": "os/linux/seccomp-retain-set",
 "value": {
 "set": [
 "@rkt/default-whitelist",
],
 "errno": "ENOSYS"
 }
 }
]
...

Now run the image to verify that the umount(2) syscall is no longer allowed,
and a custom error is returned:

$ sudo rkt run --interactive --insecure-options=image seccomp-retain-set-patched.aci
image: using image from file stage1-coreos.aci
image: using image from file seccomp-retain-set-patched.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # mount | grep /proc/bus
proc on /proc/bus type proc (ro,nosuid,nodev,noexec,relatime)
/ # umount /proc/bus/
umount: can't umount /proc/bus: Function not implemented

Overriding seccomp filters at run-time

Seccomp filters can be directly overridden at run time from the command-line,
without changing the executed images.
The --seccomp option to rkt run can manipulate both the “retain” and the
“remove” isolators.

Isolator overridden from the command-line will replace all seccomp settings in
the image manifest, and can be specified as shown in this example:

$ sudo rkt run --interactive quay.io/coreos/alpine-sh --seccomp mode=remove,errno=ENOTSUP,socket
image: using image from file /usr/local/bin/stage1-coreos.aci
image: using image from local store for image name quay.io/coreos/alpine-sh

/ # whoami
root

/ # ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
ping: can't create raw socket: Not supported

Seccomp isolators are application-specific configuration entries, and in a
rkt run command line they must follow the application container image to
which they apply.
Each application within a pod can have different seccomp filters.

Recommendations

As with most security features, seccomp isolators may require some
application-specific tuning in order to be maximally effective. For this reason,
for security-sensitive environments it is recommended to have a well-specified
set of syscalls requirements and follow best practices:

	Only allow syscalls needed by an application, according to its typical usage.

	While it is possible to completely disable seccomp, it is rarely needed and
should be generally avoided. Tweaking the syscalls set is a better approach
instead.

	Avoid granting access to dangerous syscalls. For example, mount(2) [http://man7.org/linux/man-pages/man2/mount.2.html] and
ptrace(2) [http://man7.org/linux/man-pages/man2/ptrace.2.html] are typically abused to escape containers.

	Prefer a whitelisting approach, trying to keep the “retain-set” as small as
possible.

 Using rkt with Nomad

Using rkt with Nomad

Nomad [https://www.nomadproject.io/] is a distributed scheduler which supports using a variety of different backends to execute tasks.
As of the v0.2.0 release, Nomad includes experimental support for using rkt as a task execution driver.
For more details, check out the official Nomad documentation [https://www.nomadproject.io/docs/drivers/rkt.html].

 coreos.com/rkt/builder

coreos.com/rkt/builder

This container contains all build-time dependencies in order to build rkt.
It currently can be built in: Debian Sid.

All commands assume you are running them in your local git checkout of rkt.

Building rkt in rkt

Configure the path to your git checkout of rkt and the build output directory respectively:

export SRC_DIR=
export BUILDDIR=
mkdir -p $BUILDDIR

Start the container which will run the rkt builder [https://github.com/rkt/rkt-builder], and compile rkt:

./scripts/build-rir.sh

You should see rkt building in your rkt container, and once it’s finished, the output should be in $BUILD_DIR on your host.

 rkt configuration

rkt configuration

rkt reads configuration from two or three directories - a system directory, a local directory and, if provided, a user directory.
The system directory defaults to /usr/lib/rkt, the local directory to /etc/rkt, and the user directory to an empty string.
These locations can be changed with command line flags described below.

The system directory should contain a configuration created by a vendor (e.g. distribution).
The contents of this directory should not be modified - it is meant to be read only.

The local directory keeps configuration local to the machine.
It can be modified by the admin.

The user directory may hold some user specific configuration.
It may be useful for specifying credentials used for fetching images without spilling them to some directory readable by everyone.

rkt looks for configuration files with the .json file name extension in subdirectories beneath the system and local directories.
rkt does not recurse down the directory tree to search for these files.
Users may therefore put additional appropriate files (e.g., documentation) alongside rkt configuration in these directories, provided such files are not named with the .json extension.

Every configuration file has two common fields: rktKind and rktVersion.
Both fields’ values are strings, and the subsequent fields are specified by this pair.
The currently supported kinds and versions are described below.
These fields must be specified and cannot be empty.

rktKind describes the type of the configuration.
This is to avoid putting unrelated values into a single monolithic file.

rktVersion allows configuration versioning for each kind of configuration.
A new version should be introduced when doing some backward-incompatible changes: for example, when removing a field or incompatibly changing its semantics.
When a new field is added, a default value should be specified for it, documented, and used when the field is absent in any configuration file.
This way, an older version of rkt can work with newer-but-compatible versions of configuration files, and newer versions of rkt can still work with older versions of configuration files.

Configuration values in the system directory are superseded by the value of the same field if it exists in the local directory.
The same relationship exists between the local directory and the user directory if the user directory is provided.
The semantics of overriding configuration in this manner are specific to the kind and version of the configuration, and are described below.
File names are not examined in determining local overrides.
Only the fields inside configuration files need to match.

Command line flags

To change the system configuration directory, use --system-config flag.
To change the local configuration directory, use --local-config flag.
To change the user configuration directory, use --user-config flag.

Configuration kinds

rktKind: auth

The auth configuration kind is used to set up necessary credentials when downloading images and signatures.
The configuration files should be placed inside the auth.d subdirectory (e.g., in the case of the default system/local directories, in /usr/lib/rkt/auth.d and/or /etc/rkt/auth.d).

rktVersion: v1

Description and examples

This version of the auth configuration specifies three additional fields: domains, type and credentials.

The domains field is an array of strings describing hosts for which the following credentials should be used.
Each entry must consist of a host/port combination in a URL as specified by RFC 3986.
This field must be specified and cannot be empty.

The type field describes the type of credentials to be sent.
This field must be specified and cannot be empty.

The credentials field is defined by the type field.
It should hold all the data that are needed for successful authentication with the given hosts.

This version of auth configuration supports three methods - basic HTTP authentication, OAuth Bearer Token, and AWS v4 authentication.

Basic HTTP authentication requires two things - a user and a password.
To use this type, define type as basic and the credentials field as a map with two keys - user and password.
These fields must be specified and cannot be empty.
For example:

/etc/rkt/auth.d/coreos-basic.json:

{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": ["coreos.com", "tectonic.com"],
 "type": "basic",
 "credentials": {
 "user": "foo",
 "password": "bar"
 }
}

OAuth Bearer Token authentication requires only a token.
To use this type, define type as oauth and the credentials field as a map with only one key - token.
This field must be specified and cannot be empty.
For example:

/etc/rkt/auth.d/coreos-oauth.json:

{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": ["coreos.com", "tectonic.com"],
 "type": "oauth",
 "credentials": {
 "token": "sometoken"
 }
}

AWS v4 authentication requires three things - an access key ID, a secret access key and an AWS region. If the region is left empty, it will be determined automatically from the URL/domain.
To use this type, define type as aws and the credentials field as a map with two or three keys - accessKeyID and secretAccessKey are mandatory, whilst awsRegion is optional and can be left empty.
For example:

/etc/rkt/auth.d/coreos-aws.json:

{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": ["my-s3-bucket.s3.amazonaws.com"],
 "type": "aws",
 "credentials": {
 "accessKeyID": "foo",
 "secretAccessKey": "bar",
 "awsRegion": "us-east-1"
 }
}

Override semantics

Overriding is done for each domain.
That means that the user can override authentication type and/or credentials used for each domain.
As an example, consider this system configuration:

/usr/lib/rkt/auth.d/coreos.json:

{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": ["coreos.com", "tectonic.com", "kubernetes.io"],
 "type": "oauth",
 "credentials": {
 "token": "common-token"
 }
}

If only this configuration file is provided, then when downloading data from either coreos.com, tectonic.com or kubernetes.io, rkt would send an HTTP header of: Authorization: Bearer common-token.

But with additional configuration provided in the local configuration directory, this can be overridden.
For example, given the above system configuration and the following local configuration:

/etc/rkt/auth.d/specific-coreos.json:

{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": ["coreos.com"],
 "type": "basic",
 "credentials": {
 "user": "foo",
 "password": "bar"
 }
}

/etc/rkt/auth.d/specific-tectonic.json:

{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": ["tectonic.com"],
 "type": "oauth",
 "credentials": {
 "token": "tectonic-token"
 }
}

The result is that when downloading data from kubernetes.io, rkt still sends Authorization: Bearer common-token, but when downloading from coreos.com, it sends Authorization: Basic Zm9vOmJhcg== (i.e. foo:bar encoded in base64).
For tectonic.com, it will send Authorization: Bearer tectonic-token.

Note that within a particular configuration directory (either system or local), it is a syntax error for the same domain to be defined in multiple files.

Command line flags

There are no command line flags for specifying or overriding the auth configuration.

rktKind: dockerAuth

The dockerAuth configuration kind is used to set up necessary credentials when downloading data from Docker registries.
The configuration files should be placed inside auth.d subdirectory (e.g. in /usr/lib/rkt/auth.d or /etc/rkt/auth.d).

rktVersion: v1

Description and examples

This version of dockerAuth configuration specifies two additional fields: registries and credentials.

The registries field is an array of strings describing Docker registries for which the associated credentials should be used.
This field must be specified and cannot be empty.
A short list of popular Docker registries is given below.

The credentials field holds the necessary data to authenticate against the Docker registry.
This field must be specified and cannot be empty.

Currently, Docker registries only support basic HTTP authentication, so credentials has two subfields - user and password.
These fields must be specified and cannot be empty.

Some popular Docker registries:

	registry-1.docker.io (Assumed as the default when no specific registry is named on the rkt command line, as in docker:///redis.)

	quay.io

	gcr.io

Example dockerAuth configuration:

/etc/rkt/auth.d/docker.json:

{
 "rktKind": "dockerAuth",
 "rktVersion": "v1",
 "registries": ["registry-1.docker.io", "quay.io"],
 "credentials": {
 "user": "foo",
 "password": "bar"
 }
}

Override semantics

Overriding is done for each registry.
That means that the user can override credentials used for each registry.
For example, given this system configuration:

/usr/lib/rkt/auth.d/docker.json:

{
 "rktKind": "dockerAuth",
 "rktVersion": "v1",
 "registries": ["registry-1.docker.io", "gcr.io", "quay.io"],
 "credentials": {
 "user": "foo",
 "password": "bar"
 }
}

If only this configuration file is provided, then when downloading images from either registry-1.docker.io, gcr.io, or quay.io, rkt would use user foo and password bar.

But with additional configuration provided in the local configuration directory, this can be overridden.
For example, given the above system configuration and the following local configuration:

/etc/rkt/auth.d/specific-quay.json:

{
 "rktKind": "dockerAuth",
 "rktVersion": "v1",
 "registries": ["quay.io"],
 "credentials": {
 "user": "baz",
 "password": "quux"
 }
}

/etc/rkt/auth.d/specific-gcr.json:

{
 "rktKind": "dockerAuth",
 "rktVersion": "v1",
 "registries": ["gcr.io"],
 "credentials": {
 "user": "goo",
 "password": "gle"
 }
}

The result is that when downloading images from registry-1.docker.io, rkt still sends user foo and password bar, but when downloading from quay.io, it uses user baz and password quux; and for gcr.io it will use user goo and password gle.

Note that within a particular configuration directory (either system or local), it is a syntax error for the same Docker registry to be defined in multiple files.

Command line flags

There are no command line flags for specifying or overriding the docker auth configuration.

rktKind: paths

The paths configuration kind is used to customize the various paths that rkt uses.
The configuration files should be placed inside the paths.d subdirectory (e.g., in the case of the default system/local directories, in /usr/lib/rkt/paths.d and/or /etc/rkt/paths.d).

rktVersion: v1

Description and examples

This version of the paths configuration specifies two additional fields: data and stage1-images.

The data field is a string that defines where image data and running pods are stored.
This field is optional.

The stage1-images field is a string that defines where are the stage1 images are stored, so rkt can search for them when using the --stage1-from-dir flag.
This field is optional.

Example paths configuration:

/etc/rkt/paths.d/paths.json:

{
 "rktKind": "paths",
 "rktVersion": "v1",
 "data": "/home/me/rkt/data",
 "stage1-images": "/home/me/rkt/stage1-images"
}

Override semantics

Overriding is done for each path.
For example, given this system configuration:

/usr/lib/rkt/paths.d/data.json:

{
 "rktKind": "paths",
 "rktVersion": "v1",
 "data": "/opt/rkt-stuff/data"
}

If only this configuration file is provided, then rkt will store images and pods in the /opt/rkt-stuff/data directory.
Also, when user passes --stage1-from-dir=stage1.aci to rkt, rkt will search for this file in the directory specified at build time (usually /usr/lib/rkt/stage1-images).

But with additional configuration provided in the local configuration directory, this can be overridden.
For example, given the above system configuration and the following local configuration:

/etc/rkt/paths.d/paths.json:

{
 "rktKind": "paths",
 "rktVersion": "v1",
 "data": "/home/me/rkt"
}

Now rkt will store the images and pods in the /home/me/rkt directory.
It will not know about any other data directory.
Also, rkt will still search for the stage1 images in the directory specified at build time for the --stage1-from-dir flag.

To override the stage1 images directory:

/etc/rkt/paths.d/stage1.json:

{
 "rktKind": "paths",
 "rktVersion": "v1",
 "stage1-images": "/home/me/stage1-images"
}

Now rkt will search in the /home/me/stage1/images directory, not in the directory specified at build time.

Command line flags

The data field can be overridden with the --dir flag.
The stage1-images field cannot be overridden with a command line flag.

rktKind: stage1

The stage1 configuration kind is used to set up a default stage1 image.
The configuration files should be placed inside the stage1.d subdirectory (e.g., in the case of the default system/local directories, in /usr/lib/rkt/stage1.d and/or /etc/rkt/stage1.d).

rktVersion: v1

Description and examples

This version of the stage1 configuration specifies three additional fields: name, version and location.

The name field is a string specifying a name of a default stage1 image.
This field is optional.
If specified, the version field must be specified too.

The version field is a string specifying a version of a default stage1 image.
This field is optional.
If specified, the name field must be specified too.

The location field is a string describing the location of a stage1 image file.
This field is optional.

The name and version fields are used by rkt (unless overridden with a run-time flag or left empty) to search for the stage1 image in the image store.
If it is not found there then rkt will use a value from the location field (again, unless overridden or empty) to fetch the stage1 image.

If the name, version and location fields are specified then it is expected that the file in location is a stage1 image with the same name and version in manifest as values of the name and version fields, respectively.
Note that this is not enforced in any way.

The location field can be:

	a file:// URL

	a http:// URL

	a https:// URL

	a docker:// URL

	an absolute path (basically the same as a file:// URL)

An example:

{
 "rktKind": "stage1",
 "rktVersion": "v1",
 "name": "example.com/rkt/stage1",
 "version": "1.2.3",
 "location": "https://example.com/download/stage1-1.2.3.aci"
}

Override semantics

Overriding is done separately for the name-and-version pairs and for the locations.
That means that the user can override either both a name and a version or a location.
As an example, consider this system configuration:

/usr/lib/rkt/stage1.d/coreos.json:

{
 "rktKind": "stage1",
 "rktVersion": "v1",
 "name": "coreos.com/rkt/stage1-coreos",
 "version": "0.15.0+git",
 "location": "/usr/libexec/rkt/stage1-coreos.aci"
}

If only this configuration file is provided then rkt will check if coreos.com/rkt/stage1-coreos with version 0.15.0+git is in image store.
If it is absent then it would fetch it from /usr/libexec/rkt/stage1-coreos.aci.

But with additional configuration provided in the local configuration directory, this can be overridden.
For example, given the above system configuration and the following local configurations:

/etc/rkt/stage1.d/specific-coreos.json:

{
 "rktKind": "stage1",
 "rktVersion": "v1",
 "location": "https://example.com/coreos-stage1.aci"
}

The result is that rkt will still look for coreos.com/rkt/stage1-coreos with version 0.15.0+git in the image store, but if it is not found, it will fetch it from https://example.com/coreos-stage1.aci.

To continue the example, we can also override name and version with an additional configuration file like this:

/etc/rkt/stage1.d/other-name-and-version.json:

{
 "rktKind": "stage1",
 "rktVersion": "v1",
 "name": "example.com/rkt/stage1",
 "version": "1.2.3"
}

Now rkt will search for example.com/rkt/stage1 with version 1.2.3 in the image store before trying to fetch the image from https://example.com/coreos-stage1.aci.

Note that within a particular configuration directory (either system or local), it is a syntax error for the name, version or location to be defined in multiple files.

Command line flags

The name, version and location fields are ignored in favor of a value coming from --stage1-url, --stage1-path, --stage1-name, --stage1-hash, or --stage1-from-dir flags.

 Getting Started with rkt

Getting Started with rkt

The following guide will show you how to build and run a self-contained Go app using rkt, the reference implementation of the App Container Specification [https://github.com/appc/spec].
If you’re not on Linux, you should do all of this inside the rkt Vagrant [https://github.com/rkt/rkt/blob/master/Documentation/trying-out-rkt.md#rkt-using-vagrant].

Create a hello go application

package main

import (
 "log"
 "net/http"
)

func main() {
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 log.Printf("request from %v\n", r.RemoteAddr)
 w.Write([]byte("hello\n"))
 })
 log.Fatal(http.ListenAndServe(":5000", nil))
}

Build a statically linked Go binary

Next we need to build our application.
We are going to statically link our app so we can ship an App Container Image with no external dependencies.

$ CGO_ENABLED=0 go build -ldflags '-extldflags "-static"'

Before proceeding, verify that the produced binary is statically linked:

$ file hello
hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped
$ ldd hello
 not a dynamic executable

Create the image

To create the image, we can use acbuild [https://github.com/containers/build], which can be downloaded via one of the releases in the containers/build repository [https://github.com/containers/build/releases].

The following commands will create an ACI containing our application and important metadata.

acbuild begin
acbuild set-name example.com/hello
acbuild copy hello /bin/hello
acbuild set-exec /bin/hello
acbuild port add www tcp 5000
acbuild label add version 0.0.1
acbuild label add arch amd64
acbuild label add os linux
acbuild annotation add authors "Carly Container <carly@example.com>"
acbuild write hello-0.0.1-linux-amd64.aci
acbuild end

Run

Launch a local application image

rkt --insecure-options=image run hello-0.0.1-linux-amd64.aci

Note that --insecure-options=image is required because, by default, rkt expects our images to be signed.
See the Signing and Verification Guide for more details.

At this point our hello app is running and ready to handle HTTP requests.

To stop the container, pass three escape characters (^]^]^]), which is generated by Ctrl-] on a US keyboard. You can also run rkt as a daemon.

Test with curl

By default, rkt will assign the running container an IP address. Use rkt list to discover what it is:

rkt list
UUID APP IMAGE NAME STATE NETWORKS
885876b0 hello example.com/hello:0.0.1 running default:ip4=172.16.28.2

Then you can curl that IP on port 5000:

$ curl 172.16.28.2:5000
hello

 Running Docker images with rkt

Running Docker images with rkt

rkt features native support for fetching and running Docker container images.

Getting started

To reference a Docker image, use the docker:// prefix when fetching or running images.

Note that Docker images do not support signature verification, and hence it’s necessary to use the --insecure-options=image flag.

As a simple example, let’s run the latest redis [https://hub.docker.com/_/redis/] container image from the default Docker registry:

rkt --insecure-options=image run docker://redis
rkt: fetching image from docker://redis
rkt: warning: image signature verification has been disabled
Downloading layer: 511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158
...
Downloading layer: f2fb89b0a711a7178528c7785d247ba3572924353b0d5e23e9b28f0518253b22
4:C 19 Apr 06:09:02.372 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf
4:M 19 Apr 06:09:02.373 # You requested maxclients of 10000 requiring at least 10032 max file descriptors.
4:M 19 Apr 06:09:02.373 # Redis can't set maximum open files to 10032 because of OS error: Operation not permitted.
4:M 19 Apr 06:09:02.373 # Current maximum open files is 8192. maxclients has been reduced to 8160 to compensate for low ulimit. If you need higher maxclients increase 'ulimit -n'.
 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 3.0.0 (00000000/0) 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 4
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

4:M 19 Apr 06:09:02.374 # Server started, Redis version 3.0.0
4:M 19 Apr 06:09:02.375 # WARNING overcommit_memory is set to 0! Background save may fail under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect.
4:M 19 Apr 06:09:02.375 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.
4:M 19 Apr 06:09:02.375 * The server is now ready to accept connections on port 6379

This behaves similarly to the Docker client: if no specific registry is named, the Docker Hub [https://hub.docker.com] is used by default.

As with Docker, alternative registries can be used by specifying the registry as part of the image reference.
For example, the following command will fetch an nginx [https://quay.io/repository/zanui/nginx] Docker image hosted on quay.io [https://quay.io/]:

rkt --insecure-options=image fetch docker://quay.io/zanui/nginx
rkt: fetching image from docker://quay.io/zanui/nginx
rkt: warning: image signature verification has been disabled
Downloading layer: 511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158
...
Downloading layer: 340951f1240f3dc1189ae32cfa5af35df2dc640e0c92f2397b7a72e174c1a158
sha512-c6d6efd98f506380ff128e473ca239ed

The hash printed in the final line represents the image ID of the converted ACI.

After the image has been retrieved, it can be run by referencing this hash:

rkt --insecure-options=image run sha512-c6d6efd98f506380ff128e473ca239ed

 Using NAT with bridge

Using NAT with bridge

The bridge plugin [https://github.com/appc/cni/blob/master/Documentation/bridge.md] can be configured to create a separate network on the host that will be NAT’ed similar to the default network.
The difference to a ptp configured network is that the pods will be able to communicate directly through the bridge and don’t have to pass the host as a gateway.

$ cat /etc/rkt/net.d/10-bridge-nat.conf
{
 "name": "bridge-nat",
 "type": "bridge",
 "bridge": "rkt-bridge-nat",
 "ipMasq": true,
 "isGateway": true,
 "ipam": {
 "type": "host-local",
 "subnet": "10.2.0.0/24",
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
}

This will add a bridge interface named rkt-bridge-nat on the host and attach the pod’s veth endpoint to it.
It will not attach any other interface to the bridge, which remains the user’s responsibility.

Inside the pod, the interface configuration looks like this:

$ sudo rkt run --net=bridge-nat --interactive --debug kinvolk.io/aci/busybox:1.24
(...)
ip -4 address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
3: eth0@if68: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 inet 10.2.0.2/24 scope global eth0
 valid_lft forever preferred_lft forever
5: eth1@if69: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 inet 172.16.28.2/24 scope global eth1
 valid_lft forever preferred_lft forever
ip -4 route
default via 10.2.0.1 dev eth0
10.2.0.0/24 dev eth0 src 10.2.0.2
172.16.28.0/24 via 172.16.28.1 dev eth1 src 172.16.28.2
172.16.28.1 dev eth1 src 172.16.28.2

Note that the default-restricted network has been loaded in addition to the requested network.

 DNS configuration

DNS configuration

rkt can automatically prepare /etc/resolv.conf and /etc/hosts for the apps in the pod.
They can either be generated at runtime, or the host’s configuration can be used.

/etc/resolv.conf

Four options affect how this file is created:

	--dns : Specify either a DNS server, or one of the “magic” values host or none

	--dns-domain : The resolv.conf domain parameter

	--dns-opt : One or more resolv.conf option parameters

	--dns-search : One or more domains for the search list

The simplest configuration is:

$ sudo rkt run --dns=8.8.8.8 pod.aci

Other parameters can be given:

$ sudo rkt run \
 --dns=8.8.8.8 --dns=4.2.2.2 \
 --dns-domain=example.org \
 --dns-opt=debug --dns-opt=rotate \
 --dns-search=example.com --dns-search=example.gov \
 pod.aci

This will generate the following /etc/resolv.conf for the applications:

Generated by rkt run

search example.com example.gov
nameserver 8.8.8.8
nameserver 4.2.2.2
options debug rotate
domain example.org

“Magic” parameters

host

The magic parameter host will bind-mount the host’s /etc/resolv.conf in to the applications.
This will be a read-only mount.

none

The magic parameter none will ignore any DNS configuration from CNI. This will ensure that
the image’s /etc/resolv.conf has precedence.

Precedence

resolv.conf can be generated by multiple components. The order of precedence is:

	If --dns, et al. are passed to rkt run

	If a CNI plugin returns DNS information, unless --dns=none is passed

	If a volume is mounted on /etc/resolv.conf

	If the application container includes /etc/resolv.conf

[image: resolv-conf-logic]

/etc/hosts

rkt run provides one option with two modes:

	--hosts-entry <IP>=<HOST>

	--hosts-entry host

Passing --hosts-entry=host will bind-mount (read-only) the hosts’s /etc/hosts
in to every application.

When passing IP=HOST pairs:

$ rkt run ... --hosts-entry 198.51.100.0=host1,198.51.100.1=host2 --hosts-entry 198.51.100.0=host3

rkt will take some standard defaults [https://github.com/rkt/rkt/blob/master/stage1/net/rootfs/etc/hosts-fallback]
and append the requested entries.

< the default entries >

198.51.100.0 host1 host3
198.51.100.1 host2

Precedence

/etc/hosts can be generated by multiple components. The order of precedence is:

	If --hosts-entry is passed to rkt run

	If a volume is mounted on /etc/hosts

	If the app image includes /etc/hosts

	Otherwise, a fallback stub /etc/hosts is created

Example

The following example shows that the DNS options allow the pod to resolve names successfully:

$ sudo rkt run --net=host --dns=8.8.8.8 quay.io/coreos/alpine-sh --exec=/bin/ping --interactive -- -c 1 coreos.com
...

PING coreos.com (104.20.47.236): 56 data bytes
64 bytes from 104.20.47.236: seq=0 ttl=63 time=5.421 ms

--- coreos.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 5.421/5.421/5.421 ms

 Overriding defaults

Overriding defaults

This document holds information about modifying or replacing builtin defaults and is only recommended to advanced users.
Please make sure to have read the networking overview page before treading into these things.

Overriding the “default” network

If a network has a name “default”, it will override the default network added by rkt.
It is strongly recommended that such network also has type “ptp” as it protects from the pod spoofing its IP address and defeating identity management provided by the metadata service.

Overriding network settings

The network backend CNI allows the passing of arguments as plugin parameters [https://github.com/appc/cni/blob/master/SPEC.md#parameters], specifically CNI_ARGS, at runtime.
These arguments can be used to reconfigure a network without changing the configuration file.
rkt supports the CNI_ARGS variable through the command line argument --net.

Syntax

The syntax for passing arguments to a network looks like --net="$networkname1:$arg1=$val1;$arg2=val2".
When executed from a shell, you can use double quotes to avoid ; being interpreted as a command separator by the shell.
To allow the passing of arguments to different networks simply append the arguments to the network name with a colon (:), and separate the arguments by semicolon (;).
All arguments can either be given in a single instance of the --net, or can be spread across multiple uses of --net.
Reminder: the separator for the networks (and their arguments) within one --net instance is the comma ,.
A network name must not be passed more than once, not within the same nor throughout multiple instances of --net.

Example: Passing arguments to two different networks

This example will override the IP in the networks net1 and net2.

rkt run --net="net1:IP=1.2.3.4" --net="net2:IP=1.2.4.5" pod.aci

Example: load all networks and override IPs for two different networks

This example will load all configured networks and override the IP addresses for net1 and net2.

rkt run --net="all,net1:IP=1.2.3.4" --net="net2:IP=1.2.4.5" pod.aci

Supported CNI_ARGS

This is not documented yet.
Please follow CNI issue #56 [https://github.com/appc/cni/issues/56] to track the progress of the documentation.

 Networking

Networking

On some of rkt’s subcommands (run, run-prepared), the --net flag allows you to configure the pod’s network.
The various options can be grouped by two categories:

	host mode

	contained mode (default)

This document gives a brief overview of the supported plugins.
More examples and advanced topics are linked in the more docs section.

Host mode

When --net=host is passed the pod’s apps will inherit the network namespace of the process that is invoking rkt.

If rkt is directly called from the host the apps within the pod will share the network stack and the interfaces with the host machine.
This means that every network service that runs in the pod has the same connectivity as if it was started on the host directly.

Applications that run in a pod which shares the host network namespace are able to access everything associated with the host’s network interfaces: IP addresses, routes, iptables rules and sockets, including abstract Linux sockets.
Depending on the host’s setup these abstract Linux sockets, used by applications like X11 and D-Bus, might expose critical endpoints to the pod’s applications.
This risk can be avoided by configuring a separate namespace for pod.

Contained mode

If anything other than host is passed to --net=, the pod will live in a separate network namespace with the help of CNI [https://github.com/appc/cni] and its plugin system.
The network setup for the pod’s network namespace depends on the available CNI configuration files that are shipped with rkt and also configured by the user.

Network selection

Every network must have a unique name and can only be joined once by every pod.
Passing a list of comma separated network as in --net=net1,net2,net3,... tells rkt which networks should be joined.
This is useful for grouping certain pod networks together while separating others.
There is also the possibility to load all configured networks by using --net=all.

Builtin networks

rkt ships with two built-in networks, named default and default-restricted.

The default network

The default network is loaded automatically in three cases:

	--net is not present on the command line

	--net is passed with no options

	--net=defaultis passed

It consists of a loopback device and a veth device.
The veth pair creates a point-to-point link between the pod and the host.
rkt will allocate an IPv4 address out of 172.16.28.0/24 for the pod’s veth interface.
It will additionally set the default route in the pod namespace.
Finally, it will enable IP masquerading on the host to NAT the egress traffic.

Note: The default network must be explicitly listed in order to be loaded when --net=n1,n2,... is specified with a list of network names.

Example: If you want default networking and two more networks you need to pass --net=default,net1,net2.

The default-restricted network

The default-restricted network does not set up the default route and IP masquerading.
It only allows communication with the host via the veth interface and thus enables the pod to communicate with the metadata service which runs on the host.
If default is not among the specified networks, the default-restricted network will be added to the list of networks automatically.
It can also be loaded directly by explicitly passing --net=default-restricted.

No (loopback only) networking

The passing of --net=none will put the pod in a network namespace with only the loopback networking.
This can be used to completely isolate the pod’s network.

$ sudo rkt run --interactive --net=none kinvolk.io/aci/busybox:1.24
(...)
/ # ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
/ # ip route
/ # ping localhost
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: seq=0 ttl=64 time=0.022 ms
^C

The situation here is very straightforward: no routes, the interface lo with the local address.
The resolution of localhost is enabled in rkt by default, as it will generate a minimal /etc/hosts inside the pod if the image does not provide one.

Setting up additional networks

In addition to the default network (veth) described in the previous sections, rkt pods can be configured to join additional networks.
Each additional network will result in an new interface being set up in the pod.
The type of network interface, IP, routes, etc is controlled via a configuration file residing in /etc/rkt/net.d directory.
The network configuration files are executed in lexicographically sorted order.
Each file consists of a JSON dictionary as shown below:

$ cat /etc/rkt/net.d/10-containers.conf
{
 "name": "containers",
 "type": "bridge",
 "ipam": {
 "type": "host-local",
 "subnet": "10.1.0.0/16"
 }
}

This configuration file defines a linux-bridge based network on 10.1.0.0/16 subnet.
The following fields apply to all configuration files.
Additional fields are specified for various types.

	name (string): an arbitrary label for the network.
By convention the conf file is named with a leading ordinal, dash, network name, and .conf extension.

	type (string): the type of network/interface to create.
The type actually names a network plugin.
rkt is bundled with some built-in plugins.

	ipam (dict): IP Address Management – controls the settings related to IP address assignment, gateway, and routes.

Built-in network types

ptp

ptp is probably the simplest type of networking and is used to set up default network.
It creates a virtual ethernet pair (akin to a pipe) and places one end into pod and the other on the host.

ptp specific configuration fields are:

	mtu (integer): the size of the MTU in bytes.

	ipMasq (boolean): whether to set up IP masquerading on the host.

bridge

Like the ptp type, bridge will create a veth pair and attach one end to the pod.
However the host end of the veth will be plugged into a linux-bridge.
The configuration file specifies the bridge name and if the bridge does not exist, it will be created.
The bridge can optionally be configured to act as the gateway for the network.

bridge specific configuration fields are:

	bridge (string): the name of the bridge to create and/or plug into.
Defaults to rkt0.

	isGateway (boolean): whether the bridge should be assigned an IP and act as a gateway.

	mtu (integer): the size of the MTU in bytes for bridge and veths.

	ipMasq (boolean): whether to set up IP masquerading on the host.

macvlan

macvlan behaves similar to a bridge but does not provide communication between the host and the pod.

macvlan creates a virtual copy of a master interface and assigns the copy a randomly generated MAC address.
The pod can communicate with the network that is attached to the master interface.
The distinct MAC address allows the pod to be identified by external network services like DHCP servers, firewalls, routers, etc.
macvlan interfaces cannot communicate with the host via the macvlan interface.
This is because traffic that is sent by the pod onto the macvlan interface is bypassing the master interface and is sent directly to the interfaces underlying network.
Before traffic gets sent to the underlying network it can be evaluated within the macvlan driver, allowing it to communicate with all other pods that created their macvlan interface from the same master interface.

macvlan specific configuration fields are:

	master (string): the name of the host interface to copy.
This field is required.

	mode (string): one of “bridge”, “private”, “vepa”, or “passthru”.
This controls how traffic is handled between different macvlan interfaces on the same host.
See this guide [http://www.pocketnix.org/posts/Linux%20Networking:%20MAC%20VLANs%20and%20Virtual%20Ethernets] for discussion of modes.
Defaults to “bridge”.

	mtu (integer): the size of the MTU in bytes for the macvlan interface.
Defaults to MTU of the master device.

	ipMasq (boolean): whether to set up IP masquerading on the host.
Defaults to false.

ipvlan

ipvlan behaves very similar to macvlan but does not provide distinct MAC addresses for pods.
macvlan and ipvlan can’t be used on the same master device together.

ipvlan creates virtual copies of interfaces like macvlan but does not assign a new MAC address to the copied interface.
This does not allow the pods to be distinguished on a MAC level and so cannot be used with DHCP servers.
In other scenarios this can be an advantage, e.g. when an external network port does not allow multiple MAC addresses.
ipvlan also solves the problem of MAC address exhaustion that can occur with a large number of pods copying the same master interface.
ipvlan interfaces are able to have different IP addresses than the master interface and will therefore have the needed distinction for most use-cases.

ipvlan specific configuration fields are:

	master (string): the name of the host interface to copy.
This field is required.

	mode (string): one of “l2”, “l3”.
See kernel documentation on ipvlan [https://www.kernel.org/doc/Documentation/networking/ipvlan.txt].
Defaults to “l2”.

	mtu (integer): the size of the MTU in bytes for the ipvlan interface.
Defaults to MTU of the master device.

	ipMasq (boolean): whether to set up IP masquerading on the host.
Defaults to false.

Notes

	ipvlan can cause problems with duplicated IPv6 link-local addresses since they are partially constructed using the MAC address.
This issue is being currently addressed by the ipvlan kernel module developers.

IP Address Management

The policy for IP address allocation, associated gateway and routes is separately configurable via the ipam section of the configuration file.
rkt currently ships with two IPAM types: host-local and DHCP.
Like the network types, IPAM types can be implemented by third-parties via plugins.

host-local

host-local type allocates IPs out of specified network range, much like a DHCP server would.
The difference is that while DHCP uses a central server, this type uses a static configuration.
Consider the following conf:

$ cat /etc/rkt/net.d/10-containers.conf
{
 "name": "containers",
 "type": "bridge",
 "bridge": "rkt1",
 "ipam": {
 "type": "host-local",
 "subnet": "10.1.0.0/16"
 }
}

This configuration instructs rkt to create rkt1 Linux bridge and plugs pods into it via veths.
Since the subnet is defined as 10.1.0.0/16, rkt will assign individual IPs out of that range.
The first pod will be assigned 10.1.0.2/16, next one 10.1.0.3/16, etc (it reserves 10.1.0.1/16 for gateway).
Additional configuration fields:

	subnet (string): subnet in CIDR notation for the network.

	rangeStart (string): first IP address from which to start allocating IPs.
Defaults to second IP in subnet range.

	rangeEnd (string): last IP address in the allocatable range.
Defaults to last IP in subnet range.

	gateway (string): the IP address of the gateway in this subnet.

	routes (list of strings): list of IP routes in CIDR notation.
The routes get added to pod namespace with next-hop set to the gateway of the network.

The following shows a more complex IPv6 example in combination with the ipvlan plugin.
The gateway is configured for the default route, allowing the pod to access external networks via the ipvlan interface.

{
 "name": "ipv6-public",
 "type": "ipvlan",
 "master": "em1",
 "mode": "l3",
 "ipam": {
 "type": "host-local",
 "subnet": "2001:0db8:161:8374::/64",
 "rangeStart": "2001:0db8:161:8374::1:2",
 "rangeEnd": "2001:0db8:161:8374::1:fffe",
 "gateway": "fe80::1",
 "routes": [
 { "dst": "::0/0" }
]
 }
}

dhcp

The DHCP type requires a special client daemon, part of the CNI DHCP plugin [https://github.com/appc/cni/blob/master/Documentation/dhcp.md], to be running on the host.
This acts as a proxy between a DHCP client running inside the container and a DHCP service already running on the network, as well as renewing leases appropriately.

The DHCP plugin binary can be executed in the daemon mode by launching it with daemon argument.
However, in rkt the DHCP plugin is bundled in stage1.aci so this requires extracting the binary from it:

$ sudo ./rkt fetch --insecure-options=image ./stage1.aci
$ sudo ./rkt image extract coreos.com/rkt/stage1 /tmp/stage1
$ sudo cp /tmp/stage1/rootfs/usr/lib/rkt/plugins/net/dhcp .

Now start the daemon:

$ sudo ./dhcp daemon

It is now possible to use the DHCP type by specifying it in the ipam section of the network configuration file:

{
 "name": "lan",
 "type": "macvlan",
 "master": "eth0",
 "ipam": {
 "type": "dhcp"
 }
}

For more information about the DHCP plugin, see the CNI docs [https://github.com/appc/cni/blob/master/Documentation/dhcp.md].

Other plugins

flannel

This plugin is designed to work in conjunction with flannel, a network fabric for containers.
The basic network configuration is as follows:

{
 "name": "containers",
 "type": "flannel"
}

This will set up a linux-bridge, connect the container to the bridge and assign container IPs out of the subnet that flannel assigned to the host.
For more information included advanced configuration options, see CNI docs [https://github.com/appc/cni/blob/master/Documentation/flannel.md].

Exposing container ports on the host

Apps declare their public ports in the image manifest file.
A user can expose some or all of these ports to the host when running a pod.
Doing so allows services inside the pods to be reachable through the host’s IP address.

The example below demonstrates an image manifest snippet declaring a single port:

"ports": [
 {
 "name": "http",
 "port": 80,
 "protocol": "tcp"
 }
]

The pod’s TCP port 80 can be mapped to an arbitrary port on the host during rkt invocation:

rkt run --port=http:8888 myapp.aci

Now, any traffic arriving on host’s TCP port 8888 will be forwarded to the pod on port 80.

Network used for forwarded ports

The network that will be chosen for the port forwarding depends on the ipMasq setting of the configured networks.
If at least one of them has ipMasq enabled, the forwarded traffic will be passed through the first loaded network that has IP masquerading enabled.
If no network is masqueraded, the last loaded network will be used.
As a reminder, the sort order of the loaded networks is detailed in the chapter about setting up additional networks.

Socket Activation

rkt also supports socket activation.
This is documented in Socket-activated service.

More Docs

Examples

	bridge plugin

Other topics:

	DNS configuration

	Overriding defaults

 Life-cycle of a pod in rkt

Life-cycle of a pod in rkt

Throughout this document $var is used to refer to the directory /var/lib/rkt/pods, and $uuid refers to a pod’s UUID e.g. “076292e6-54c4-4cc8-9fa7-679c5f7dcfd3”.

Due to rkt’s architecture - and specifically its lack of any management daemon process - a combination of advisory file locking and atomic directory renames (via rename(2) [http://man7.org/linux/man-pages/man2/rename.2.html]) is used to represent and transition the basic pod states.

At times where a state must be reliably coupled to an executing process, that process is executed with an open file descriptor possessing an exclusive advisory lock on the respective pod’s directory.
Should that process exit for any reason, its open file descriptors will automatically be closed by the kernel, implicitly unlocking the pod’s directory.
By attempting to acquire a shared non-blocking advisory lock on a pod directory we’re able to poll for these process-bound states, additionally by employing a blocking acquisition mode we may reliably synchronize indirectly with the exit of such processes, effectively providing us with a wake-up event the moment such a state transitions.
For more information on advisory locks see the flock(2) [http://man7.org/linux/man-pages/man2/flock.2.html] man page.

At this time there are four distinct phases of a pod’s life which involve process-bound states:

	Prepare

	Run

	ExitedGarbage

	Garbage

Each of these phases involves an exclusive lock on a given pod’s directory.
As an exclusive lock by itself cannot express both the phase and process-bound activity within that phase, we combine the lock with the pod’s directory location to represent the whole picture:

Phase	Directory	Locked exclusively	Unlocked
—————	—————————–	————————-	————————–
Prepare	“$var/prepare/$uuid”	preparing	prepare-failed
Run	“$var/run/$uuid”	running	exited
ExitedGarbage	“$var/exited-garbage/$uuid”	exited+deleting	exited+gc-marked
Garbage	“$var/garbage/$uuid”	prepare-failed+deleting	prepare-failed+gc-marked

To prevent the period between first creating a pod’s directory and acquiring its lock from appearing as prepare-failed in the Prepare phase, and to provide a phase for prepared pods where they may dwell and the lock may be acquired prior to entering the Run phase, two additional directories are employed where locks have no meaning:

Phase	Directory	Locked exclusively	Unlocked
—————–	—————————–	————————-	————————–
Embryo	“$var/embryo/$uuid”	-	-
Prepare	“$var/prepare/$uuid”	preparing	prepare-failed
Prepared	“$var/prepared/$uuid”	-	-
Run	“$var/run/$uuid”	running	exited
ExitedGarbage	“$var/exited-garbage/$uuid”	exited+deleting	exited+gc-marked
Garbage	“$var/garbage/$uuid”	prepare-failed+deleting	prepare-failed+gc-marked

App

The rkt app experimental family of subcommands allow mutating operations on a running pod: namely, adding, starting, stopping, and removing applications.
To be able to use these subcommands the environment variable RKT_EXPERIMENT_APP=true must be set.
The rkt app sandbox subcommand transitions to the Run phase as described above, whereas the remaining subcommands mutate the pod while staying in the Run phase.
To synchronize operations inside the Run phase an additional advisory lock $var/run/$uuid/pod.lck is being introduced.
Locking on the $var/run/$uuid/pod manifest won’t work because changes on it need to be atomic, realized by overwriting the original manifest.
If this file is locked, the pod is undergoing a mutation. Note that only rkt add/rm operations are synchronized.
To retain consistency for all other operations (i.e. rkt list) that need to read the $var/run/$uuid/pod manifest all mutating operations are atomic.

The app add/start/stop/rm subcommands all run within the Run phase where the exclusive advisory lock on the $var/run/$uuid directory is held by the systemd-nspawn process.
The following table gives an overview of the states when a lock on $var/run/$uuid/pod.lck is being held:

Phase	Locked exclusively	Unlocked
——–	——————–	———-
Add	adding	added
Start	-	-
Stop	-	-
Remove	removing	removed

These phases, their function, and how they proceed through their respective states is explained in more detail below.

Embryo

rkt run and rkt prepare instantiate a new pod by creating an empty directory at $var/embryo/$uuid.

An exclusive lock is immediately acquired on the created directory which is then renamed to $var/prepare/$uuid, transitioning to the Prepare phase.

Prepare

rkt run and rkt prepare enter this phase identically; holding an exclusive lock on the pod directory $var/prepare/$uuid.

After preparation completes, while still holding the exclusive lock (the lock is held for the duration):

rkt prepare transitions to Prepared by renaming $var/prepare/$uuid to $var/prepared/$uuid.

rkt run transitions directly from Prepare to Run by renaming $var/prepare/$uuid to $var/run/$uuid, entirely skipping the Prepared phase.

Should Prepare fail or be interrupted, $var/prepare/$uuid will be left in an unlocked state.
Any directory in $var/prepare in an unlocked state is considered a failed prepare.
rkt gc identifies failed prepares in need of clean up by trying to acquire a shared lock on all directories in $var/prepare, renaming successfully locked directories to $var/garbage where they are then deleted.

Prepared

rkt prepare concludes successfully by leaving the pod directory at $var/prepared/$uuid in an unlocked state before returning $uuid to the user.

rkt run-prepared resumes where rkt prepare concluded by exclusively locking the pod at $var/prepared/$uuid before renaming it to $var/run/$uuid, specifically acquiring the lock prior to entering the Run phase.

rkt run never enters this phase, skipping directly from Prepare to Run with the lock held.

Run

rkt run and rkt run-prepared both arrive here with the pod at $var/run/$uuid while holding the exclusive lock.

The pod is then executed while holding this lock.
It is required that the stage1 coreos.com/rkt/stage1/run entrypoint keep the file descriptor representing the exclusive lock open for the lifetime of the pod’s process.
All this requires is that the stage1 implementation not close the inherited file descriptor.
This is facilitated by supplying stage1 its number in the RKT_LOCK_FD environment variable.

What follows applies equally to rkt run and rkt run-prepared.

Death / exit

A pod is considered exited if a shared lock can be acquired on $var/run/$uuid.
Upon exit of a pod’s process, the exclusive lock acquired before entering the Run phase becomes released by the kernel.

Garbage collection

Exited pods are discarded using a common mark-and-sweep style of garbage collection by invoking the rkt gc command.
This relatively simple approach lends itself well to a minimal file-system based implementation utilizing no additional daemons or record keeping with good efficiency.
The process is performed in two distinct passes explained in detail below.

Pass 1: mark

All directories found in $var/run are tested for exited status by trying to acquire a shared advisory lock on each directory.

When a directory’s lock cannot be acquired, the directory is skipped as it indicates the pod is currently executing.

When the lock is successfully acquired, the directory is renamed from $var/run/$uuid to $var/exited-garbage/$uuid.
This renaming effectively implements the “mark” operation.
Since the locks are immediately released, operations like rkt status may safely execute concurrently with rkt gc.

Marked exited pods dwell in the $var/exited-garbage directory for a grace period during which their status may continue to be queried by rkt status.
The rename from $var/run/$uuid to $var/exited-garbage/$uuid serves in part to keep marked pods from cluttering the $var/run directory during their respective dwell periods.

Pass 2: sweep

A side-effect of the rename operation responsible for moving a pod from $var/run to $var/exited-garbage is an update to the pod directory’s change time.
The sweep operation takes this updated file change time as the beginning of the “dwell” grace period, and discards exited pods at the expiration of that period.
This grace period currently defaults to 30 minutes, and may be explicitly specified using the --grace-period=duration flag with rkt gc.
Note that this grace period begins from the time a pod was marked by rkt gc, not when the pod exited.
A pod becomes eligible for marking when it exits, but will not actually be marked for collection until a subsequent rkt gc.

The change times of all directories found in $var/exited-garbage are compared against the current time.
Directories having sufficiently old change times are locked exclusively and cleaned up.
If a lock acquisition fails, the directory is skipped.
rkt gc may fail to acquire an exclusive lock if the pod to be collected is currently being accessed, by rkt status or another rkt gc, for example.
The skipped pods will be revisited on a subsequent rkt gc invocation’s sweep pass.
During the cleanup, the pod’s stage1 gc entry point is first executed.
This gives the stage1 a chance to clean up anything related to the environment shared between containers.
The default stage1 uses the gc entrypoint to clean up the private networking artifacts.
After the completion of the gc entrypoint, the pod directory is recursively deleted.

Pulse

To answer the questions “Has this pod exited?” and “Is this pod being deleted?” the pod’s UUID is looked for in $var/run and $var/exited-garbage, respectively.
Pods found in the $var/exited-garbage directory must already be exited, and a shared lock acquisition may be used to determine if the garbage pod is actively being deleted.
Those found in the $var/run directory may be exited or running, and a failed shared lock acquisition indicates a pod in $var/run is alive at the time of the failed acquisition.

Care must be taken when acting on what is effectively always going to be stale knowledge of pod state; though a pod’s status may be found to be “running” by the mechanisms documented here, this was an instantaneously sampled state that was true at the time sampled (failed lock attempt at $var/run/$uuid), and may cease to be true by the time code execution progressed to acting on that sample.
Pod exit is totally asynchronous and cannot be prevented, relevant code must take this into consideration (e.g. rkt enter) and be tolerant of states progressing.

For example, two rkt run-prepared invocations for the same UUID may occur simultaneously.
Only one of these will successfully transition the pod from Prepared to Run due to rename’s atomicity, which is exactly what we want.
The loser of this race needs to simply inform the user of the inability to transition the pod to the run state, perhaps with a check to see if the pod transitioned independently and a useful message mentioning it.

Another example would be two rkt gc commands finding the same exited pods and attempting to transition them to the Garbage phase concurrently.
They can’t both perform the transitions, one will lose the race at each pod.
This needs to be considered in the error handling of the transition callers as perfectly normal.
Simply ignoring ENOENT errors propagated from the loser’s rename calls can suffice.

 Control Groups (cgroups)

Control Groups (cgroups)

Background

Control Groups [https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt] are a Linux feature for organizing processes in hierarchical groups and applying resources limits to them. Each rkt pod is placed in a different cgroup to separate the processes of the pod from the processes of the host. Memory and CPU isolators are also implemented with cgroups.

What cgroup does rkt use?

Every pod and application within that pod is run within its own cgroup.

rkt started from the command line

When a recent version of systemd is running on the host and rkt is not started as a systemd service (typically, from the command line), rkt will call systemd-nspawn with --register=true. This will cause systemd-nspawn to call the D-Bus method CreateMachineWithNetwork on systemd-machined and the cgroup /machine.slice/machine-rkt... will be created. This requires systemd v216+ as detected by the machinedRegister [https://github.com/rkt/rkt/blob/master/stage1/init/init.go#L153] function in stage1’s init.

When systemd is not running on the host, or the systemd version is too old (< v216), rkt uses systemd-nspawn with the --register=false parameter. In this case, systemd-nspawn or other systemd components will not create new cgroups for rkt. Instead, rkt creates a new cgroup for each pod under the current cgroup, like $CALLER_CGROUP/machine-some-id.slice.

rkt started as a systemd service

rkt is able to detect if it is started as a systemd service (from a .service file or from systemd-run).
In that case, systemd-nspawn is started with the --keep-unit parameter.
This will cause systemd-nspawn to use the D-Bus method call RegisterMachineWithNetwork instead of CreateMachineWithNetwork and the pod will remain in the cgroup of the service.
By default, the slice is systemd.slice but users are advised to select machine.slice with systemd-run --slice=machine or Slice=machine.slice in the .service file.
It will result in /machine.slice/servicename.service when the user select that slice.

Summary

	/machine.slice/machine-rkt... when started on the command line with systemd v216+.

	/$SLICE.slice/servicename.service when started from a systemd service.

	$CALLER_CGROUP/machine-some-id.slice without systemd, or with systemd pre-v216

For example, a simple pod run interactively on a system with systemd would look like:

├─machine.slice
│ └─machine-rkt\x2df28d074b\x2da8bb\x2d4246\x2d96a5\x2db961e1fe7035.scope
│ ├─init.scope
│ │ └─/usr/lib/systemd/systemd
│ └─system.slice
│ ├─alpine-sh.service
│ │ ├─/bin/sh
│ └─systemd-journald.service
│ └─/usr/lib/systemd/systemd-journald

What subsystems does rkt use?

Right now, rkt uses the cpu, cpuset, and memory subsystems.

How are they mounted?

When the stage1 starts, it mounts /sys . Then, for every subsystem, it:

	Mounts the subsystem (on <rootfs>/sys/fs/cgroup/<subsystem>)

	Bind-mounts the subcgroup on top of itself (e.g <rootfs>/sys/fs/cgroup/memory/machine.slice/machine-rkt-UUID.scope/)

	Remounts the subsystem readonly

This is so that the pod itself cannot escape the cgroup. Currently the cgroup filesystems are not accessible to applications within the pod, but that may change.

(N.B. rkt prior to v1.23 mounted each individual knob read-write. E.g. .../memory/machine.slice/machine-rkt-UUID.scope/system.slice/etcd.service/{memory.limit_in_bytes, cgroup.procs})

Future work

Unified hierarchy and cgroup2

Unified hierarchy and cgroup2 is a new feature in Linux that will be available in Linux 4.4.

This is tracked by #1757 [https://github.com/rkt/rkt/issues/1757].

CGroup Namespaces

CGroup Namespaces is a new feature being developed in Linux.

This is tracked by #1757 [https://github.com/rkt/rkt/issues/1757].

Network isolator

Appc/spec defines the network isolator [https://github.com/appc/spec/blob/master/spec/ace.md#resourcenetwork-bandwidth] resource/network-bandwidth to limit the network bandwidth used by each app in the pod.
This is not implemented yet.
This could be implemented with cgroups.

 rkt release guide

rkt release guide

Release cycle

This section describes the typical release cycle of rkt:

	A GitHub milestone [https://github.com/rkt/rkt/milestones] sets the target date for a future rkt release. Releases occur approximately every two to three weeks.

	Issues grouped into the next release milestone are worked on in order of priority.

	Changes are submitted for review in the form of a GitHub Pull Request (PR). Each PR undergoes review and must pass continuous integration (CI) tests before being accepted and merged into the main line of rkt source code.

	The day before each release is a short code freeze during which no new code or dependencies may be merged. Instead, this period focuses on polishing the release, with tasks concerning:

	Documentation

	Usability tests

	Issues triaging

	Roadmap planning and scheduling the next release milestone

	Organizational and backlog review

	Build, distribution, and install testing by release manager

Release process

This section shows how to perform a release of rkt.
Only parts of the procedure are automated; this is somewhat intentional (manual steps for sanity checking) but it can probably be further scripted, please help.
The following example assumes we’re going from version 1.1.0 (v1.1.0) to 1.2.0 (v1.2.0).

Let’s get started:

	Start at the relevant milestone on GitHub (e.g. https://github.com/rkt/rkt/milestones/v1.2.0): ensure all referenced issues are closed (or moved elsewhere, if they’re not done). Close the milestone.

	Update the roadmap [https://github.com/rkt/rkt/blob/master/ROADMAP.md] to remove the release you’re performing, if necessary

	Ensure that stage1/aci/aci-manifest.in is the same version of appc/spec vendored with rkt. Otherwise, update it.

	Branch from the latest master, make sure your git status is clean

	Ensure the build is clean!
	git clean -ffdx && ./autogen.sh && ./configure --enable-tpm=no --enable-functional-tests && make && make check should work

	Integration tests on CI should be green

	Update the release notes [https://github.com/rkt/rkt/blob/master/CHANGELOG.md].
Try to capture most of the salient changes since the last release, but don’t go into unnecessary detail (better to link/reference the documentation wherever possible).
scripts/changelog.sh will help generating an initial list of changes. Correct/fix entries if necessary, and group them by category.

The rkt version is hardcoded in the repository [https://github.com/rkt/rkt/blob/master/configure.ac#L2], so the first thing to do is bump it:

	Run scripts/bump-release v1.2.0.
This should generate two commits: a bump to the actual release (e.g. v1.2.0, including CHANGELOG updates), and then a bump to the release+git (e.g. v1.2.0+git).
The actual release version should only exist in a single commit!

	Sanity check what the script did with git diff HEAD^^ or similar.
As well as changing the actual version, it also attempts to fix a bunch of references in the documentation etc.

	If the script didn’t work, yell at the author and/or fix it.
It can almost certainly be improved.

	File a PR and get a review from another maintainer [https://github.com/rkt/rkt/blob/master/MAINTAINERS].
This is useful to a) sanity check the diff, and b) be very explicit/public that a release is happening

	Ensure the CI on the release PR is green!

	Merge the PR

Check out the release commit and build it!

	git checkout HEAD^ should work. You want to be at the commit where the version is without “+git”. Sanity check configure.ac (2nd line).

	Build rkt inside rkt (so make sure you have rkt in your $PATH):
	export BUILDDIR=$PWD/release-build && mkdir -p $BUILDDIR && sudo BUILDDIR=$BUILDDIR ./scripts/build-rir.sh

	Sanity check the binary:
	Check release-build/target/bin/rkt version

	Check ldd release-build/target/bin/rkt: it can contain linux-vdso.so, libpthread.so, libc.so, libdl.so and ld-linux-x86-64.so but nothing else.

	Check ldd release-build/target/tools/init: same as above.

	Build convenience packages:
	sudo BUILDDIR=$BUILDDIR ./scripts/build-rir.sh --exec=./scripts/pkg/build-pkgs.sh -- 1.2.0 (add correct version)

Sign a tagged release and push it to GitHub:

	Grab the release key (see details below) and add a signed tag: GIT_COMMITTER_NAME="CoreOS Application Signing Key" GIT_COMMITTER_EMAIL="security@coreos.com" git tag -u $RKTSUBKEYID'!' -s v1.2.0 -m "rkt v1.2.0"

	Push the tag to GitHub: git push --tags

Now we switch to the GitHub web UI to conduct the release:

	Start a new release [https://github.com/rkt/rkt/releases/new] on Github

	Tag “v1.2.0”, release title “v1.2.0”

	Copy-paste the release notes you added earlier in CHANGELOG.md [https://github.com/rkt/rkt/blob/master/CHANGELOG.md]

	You can also add a little more detail and polish to the release notes here if you wish, as it is more targeted towards users (vs the changelog being more for developers); use your best judgement and see previous releases on GH for examples.

	Attach the release.
This is a simple tarball:

export RKTVER="1.2.0"
export NAME="rkt-v$RKTVER"
mkdir $NAME
cp release-build/target/bin/rkt release-build/target/bin/stage1-{coreos,kvm,fly}.aci $NAME/
cp -r dist/* $NAME/
sudo chown -R root:root $NAME/
tar czvf $NAME.tar.gz --numeric-owner $NAME/

	Attach packages, as well as each stage1 file individually so they can be fetched by the ACI discovery mechanism:

cp release-build/target/bin/*.deb .
cp release-build/target/bin/*.rpm .
cp release-build/target/bin/stage1-coreos.aci stage1-coreos-$RKTVER-linux-amd64.aci
cp release-build/target/bin/stage1-kvm.aci stage1-kvm-$RKTVER-linux-amd64.aci
cp release-build/target/bin/stage1-fly.aci stage1-fly-$RKTVER-linux-amd64.aci

	Sign all release artifacts.

rkt project key must be used to sign the generated binaries and images.$RKTSUBKEYID is the key ID of rkt project Yubikey. Connect the key and run gpg2 --card-status to get the ID.
The public key for GPG signing can be found at CoreOS Application Signing Key [https://coreos.com/security/app-signing-key] and is assumed as trusted.

The following commands are used for public release signing:

for i in $NAME.tar.gz stage1-*.aci *.deb *.rpm; do gpg2 -u $RKTSUBKEYID'!' --armor --output ${i}.asc --detach-sign ${i}; done
for i in $NAME.tar.gz stage1-*.aci *.deb *.rpm; do gpg2 --verify ${i}.asc ${i}; done

	Once signed and uploaded, double-check that all artifacts and signatures are on github. There should be 8 files in attachments (1x tar.gz, 3x ACI, 4x armored signatures).

	Publish the release!

	Clean your git tree: sudo git clean -ffdx.

Now it’s announcement time: send an email to rkt-dev@googlegroups.com describing the release.
Generally this is higher level overview outlining some of the major features, not a copy-paste of the release notes.
Use your discretion and see previous release emails [https://groups.google.com/forum/#!forum/rkt-dev] for examples.
Make sure to include a list of authors that contributed since the previous release - something like the following might be handy:

git log v1.1.0..v1.2.0 --pretty=format:"%an" | sort | uniq | tr '\n' ',' | sed -e 's#,#, #g' -e 's#, $#\n#'

 Preparing development environment and first rkt build

Preparing development environment and first rkt build

This is an example configuration and quick start guide for the installation of rkt from source on Ubuntu 16.04 GNOME. For a detailed developer’s reference, see the rkt hacking guide.

Get rkt repo and install dependencies

In this example ~/Repos is a personal workspace where all repos are stored

$ mkdir ~/Repos && cd ~/Repos
$ mkdir -p ~/.local/gopath/src/github.com/rkt
$ sudo apt-get install git
$ git -C ~/.local/gopath/src/github.com/rkt clone https://github.com/rkt/rkt.git
$ ln -s ~/.local/gopath/src/github.com/rkt/rkt rkt

On a fresh system installation, few additional software packages are needed to correctly build rkt:

$ sudo ~/Repos/rkt/scripts/install-deps-debian-sid.sh

See also the dependencies page.

Installing Go Programming Language for a single-user

$ cd ~/Downloads
$ wget https://storage.googleapis.com/golang/go1.6.1.linux-amd64.tar.gz
$ tar -xvf go1.6.1.linux-amd64.tar.gz
$ mv go ~/.local

Add GO variables to .bashrc file:

export PATH=~/.local/bin:~/.local/go/bin:$PATH
export GOPATH=~/.local/gopath
export GOROOT=~/.local/go

Install ccache (optional step)

Ccache can save a lot of time. If you build a kernel once, most of the compiled code can just be taken from the cache.
Ccache can be configured in a few easy steps:

$ sudo apt-get install ccache
$ ccache --max-size=10G
$ sudo ln -s /usr/bin/ccache /usr/local/bin/gcc

The maximum cache size is 10GB now (the default value is too small to cache kernel compilation).

Building rkt

Run the autogen and configure commands with the relevant arguments, for example (kvm as flavor):

$ cd ~/Repos/rkt
$./autogen.sh && ./configure --enable-functional-tests --enable-incremental-build --with-stage1-flavors=kvm

Now build rkt with:

$ make V=2 -j

REMEMBER: If you want to test somebody else’s changes:

$ git checkout <branch>
$ make clean
$./autogen.sh && ./configure <proper arguments>

A few useful commands

Just build and run tests:

$./tests/build-and-run-tests.sh -f kvm

Run only functional tests after build:

$ make functional-check

Check only one test:

$ make functional-check GO_TEST_FUNC_ARGS='-run TEST_NAME_HERE'

See more in the tests readme page.

Simple usage of rkt container (run, exit, remove):

$ sudo ./build-rkt-*/bin/rkt run --insecure-options=image --interactive docker://busybox
$ exit
$ sudo ./build-rkt-*/bin/rkt gc --grace-period=0

Remove all network interfaces created by rkt:

for link in $(ip link | grep rkt | cut -d':' -f2 | cut -d'@' -f1);
 sudo ip link del "${link}"
done

Simplify changes in go files, before commit:

gofmt -s -w file.go

 rkt and the Trusted Platform Module

rkt and the Trusted Platform Module

rkt supports measuring container state and configuration into the Trusted Platform Module (TPM) [https://en.wikipedia.org/wiki/Trusted_Platform_Module] event log. Enable this functionality by building rkt with the --enable-tpm=yes option to ./configure. rkt accesses the TPM via the tpmd executable available from the go-tspi project [https://github.com/coreos/go-tspi]. This tpmd is expected to listen on port 12041.

Events are logged to PCR 15, with event type 0x1000. Each event contains the following data:

	The hash of the container root filesystem

	The hash of the contents of the container manifest data

	The hash of the arguments passed to stage1

This provides a cryptographically verifiable audit log of the containers executed on a node, including the configuration of each.

 On disk format

On disk format

The data directory is /var/lib/rkt, unless configured otherwise.
For details, see the paths kind in configuration documentation.
The --dir command line option can be used to change this location.

CAS database

The CAS database is stored in /var/lib/rkt/cas/db.
The database schema can be migrated to newer versions (#706 [https://github.com/rkt/rkt/issues/706]).

CAS

The CAS also uses other directories in /var/lib/rkt/cas/.
To ensure stability for the CAS, we need to make sure we don’t remove any of those directories or make any destructive changes to them.
Future version of rkt will retain compatibility with older CAS versions.

Pods

The pods are stored in /var/lib/rkt/pods/ as explained in Life-cycle of a pod

The stability of prepared and exited pods is desirable, but not as critical as the CAS.

Configuration

The configuration on-disk format is documented separately.

 Distribution points

Distribution points

A distribution point represents a method for fetching a container image from an input string. This string does not specify an image’s type.

A distribution point can provide one or more image formats. Some Docker registries also provide OCI Images. Rkt can fetch a Docker/OCI image from a registry and convert it on the fly to its native image format, ACI. The docker2aci [https://github.com/appc/docker2aci] tool can perform this conversion in advance.

Before distribution points, rkt used ImageTypes. These mapped a specifically formatted input string to things like the distribution, transport and image type. This information is hidden now since all images are appc ACIs.

Distribution points are used as the primary expression of container image information in the different layers of rkt. This includes fetching and referencing in a CAS/ref store.

Distribution points types

Distribution points are either direct or indirect. Direct distribution points provide the final information needed to fetch the image. Indirect distribution points take some indirect steps, like discovery, before getting the final image location. An indirect distribution point may resolve to a direct distribution point.

Distribution points format

A distribution point is represented as a URI with the URI scheme as “cimd” and the remaining parts (URI opaque data and query/fragments parts) as the distribution point data. See rfc3986 [https://tools.ietf.org/html/rfc3986] for more information on this. Distribution points clearly map to a resource name, otherwise they will not fit inside a resource locator (URL). We will then use the term URIs instead of URNs because it’s the suggested name from the rfc (and URNs are defined, by rfc2141, to have the urn scheme).

Every distribution starts the same: cimd:DISTTYPE:v=uint32(VERSION): where

	cimd is the container image distribution scheme

	DISTTYPE is the distribution type

	v=uint32(VERSION) is the distribution type format version

Current rkt distribution points

Rkt has three types of distribution points:

	Appc

	ACIArchive

	Docker

Appc

This is an indirect distribution point.

Appc defines a distribution point using appc image discovery

	The format is: cimd:appc:v=0:name?label01=....&label02=....

	The distribution type is “appc”

	The labels values must be Query escaped

Example: cimd:appc:v=0:coreos.com/etcd?version=v3.0.3&os=linux&arch=amd64

ACIArchive

This is a direct distribution point since it directly define the final image location.

ACIArchive defines a distribution point using an archive file

	The format is: cimd:aci-archive:v=0:ArchiveURL?query...

	The distribution type is “aci-archive”

	ArchiveURL must be query escaped

Examples:

	cimd:aci-archive:v=0:file%3A%2F%2Fabsolute%2Fpath%2Fto%2Ffile

	cimd:aci-archive:v=0:https%3A%2F%2Fexample.com%2Fapp.aci

Docker

Docker is an indirect distribution point.

This defines a distribution point using a docker registry

The format is:

	cimd:docker:v=0:[REGISTRY_HOST[:REGISTRY_PORT]/]NAME[:TAG|@DIGEST]

	Removing the common distribution point section, the format is the same as the docker image string format (man docker-pull).

Examples:

	cimd:docker:v=0:busybox

	cimd:docker:v=0:busybox:latest

	cimd:docker:v=0:registry-1.docker.io/library/busybox@sha256:a59906e33509d14c036c8678d687bd4eec81ed7c4b8ce907b888c607f6a1e0e6

Future distribution points

OCI Image distribution(s)

This is an Indirect distribution point.

OCI images can be retrieved using a Docker registry but in future the OCI image spec will define one or more own kinds of distribution starting from an image name (with additional tags/labels).

OCI Image layout

This is a Direct distribution point.

This can fetch an image starting from a OCI image layout [https://github.com/opencontainers/image-spec/blob/master/image-layout.md] format. The ‘location’ can point to:

	A single file archive

	A local directory based layout

	A remote directory based layout

	Other types of locations

This will probably end up being the final distribution used by the above OCI image distributions (like ACIArchive is the final distribution point for the Appc distribution point):

	cimd:oci-image-layout:v=0:file%3A%2F%2Fabsolute%2Fpath%2Fto%2Ffile?ref=refname

	cimd:oci-image-layout:v=0:https%3A%2F%2Fdir%2F?ref=refname

Since the OCI image layout can provide multiple images selectable by a ref, one needs to specify which ref to use in the archive distribution URI (see the above ref query parameter). Since distribution only covers one image, it is not possible to import all refs with a single distribution URI.

TODO(sgotti): Define if oci-image-layout. It should internally handle both archive and directory based layouts or use two different distributions or a query parameter the explicitly define the layout (to avoid guessing if the URL points to a single file or to a directory).*

Note Considering this OCI image spec README section [https://github.com/opencontainers/image-spec#running-an-oci-imag://github.com/appc/docker2aci], the final distribution format will probably be similar to the Appc distribution. There is a need to distinguish their User Friendly string (prepending an appc: or oci: ?).

To sum it up:

Distribution Point	Type	URI Format	Final Distribution Point
——————–	———-	—————————————————————————	————————–
Appc	Direct	cimd:appc:v=0:name?label01=....&label02=...	ACIArchive
Docker	Direct	cimd:docker:v=0:[REGISTRY_HOST[:REGISTRY_PORT]/]NAME[:TAG|@DIGEST]	
ACIArchive	Indirect	cimd:aci-archive:v=0:ArchiveURL?query...	
OCI	Direct	cimd:oci:v=0:TODO	OCIImageLayout
OCIImageLayout	Indirect	cimd:oci-image-layout:v=0:URL?ref=...	

 User namespaces

User namespaces

Background

User namespaces is a feature of Linux that can be used to separate the user IDs and group IDs between the host and containers.
It can provide a better isolation and security: the privileged user root in the container can be mapped to a non-privileged user on the host.

Implementation status

rkt’s implementation is based on systemd-nspawn.
A pod can transparently use user IDs in the range 0-65535 and this range is mapped on the host to a high range chosen randomly.

Before the pod is started, the ACIs are rendered to the filesystem and the owners of the files are set with chown in that high range.

Current limitations

UID range allocation

When starting several pods with user namespaces, they will each get a random UID range.

Although very unlikely, it is possible that two distincts containers get the same UID range.
If this happens, user namespaces will not provide any additional isolation between the two containers, exactly like when user namespaces are not used.
The two containers will however still not use the same UID range as the host, so using user namespaces is better than not using them.
In order to avoid collisions, it is planned to implement a locking mechanism so that two pods will always have a different UID range.

Incompatible with overlayfs

The initial implementation works only with --no-overlay.
Ideally, preparing a pod should not have to iterate over all files to call chown.

It is planned to add kernel support for a mount option to shift the user IDs in the correct range (see #1057 [https://github.com/rkt/rkt/issues/1057]).
It would make it work with overlayfs.

Inconvenient UID shift on volumes

When mounting a volume from the host into the pod, the ownership of the files is not shifted, so it makes volumes difficult if not impossible to use with user namespaces.
The same kernel support should help here too (#1057 [https://github.com/rkt/rkt/issues/1057]).

 rkt architecture

rkt architecture

Overview

rkt’s primary interface is a command-line tool, rkt, which does not require a long running daemon.
This architecture allows rkt to be updated in-place without affecting application containers which are currently running.
It also means that levels of privilege can be separated out between different operations.

All state in rkt is communicated via the filesystem.
Facilities like file-locking are used to ensure co-operation and mutual exclusion between concurrent invocations of the rkt command.

Stages

Execution with rkt is divided into several distinct stages.

NB The goal is for the ABI between stages to be relatively fixed, but while rkt is still under heavy development this is still evolving.

After calling rkt the execution chain follows the numbering of stages, having the following general order:

[image: execution-flow]

	invoking process -> stage0:
The invoking process uses its own mechanism to invoke the rkt binary (stage0). When started via a regular shell or a supervisor, stage0 is usually forked and exec’ed becoming a child process of the invoking shell or supervisor.

	stage0 -> stage1:
An ordinary exec(3) [http://man7.org/linux/man-pages/man3/exec.3.html] is being used to replace the stage0 process with the stage1 entrypoint. The entrypoint is referenced by the coreos.com/rkt/stage1/run annotation in the stage1 image manifest.

	stage1 -> stage2:
The stage1 entrypoint uses its mechanism to invoke the stage2 app executables. The app executables are referenced by the apps.app.exec settings in the stage2 image manifest.

The details of the execution flow varies across the different stage1 implementations.

Stage 0

The first stage is the actual rkt binary itself.
When running a pod, this binary is responsible for performing a number of initial preparatory tasks:

	Fetching the specified ACIs, including the stage1 ACI of –stage1-{url,path,name,hash,from-dir} if specified.

	Generating a Pod UUID

	Generating a Pod Manifest

	Creating a filesystem for the pod

	Setting up stage1 and stage2 directories in the filesystem

	Unpacking the stage1 ACI into the pod filesystem

	Unpacking the ACIs and copying each app into the stage2 directories

Given a run command such as:

rkt run app1.aci app2.aci

a pod manifest compliant with the ACE spec will be generated, and the filesystem created by stage0 should be:

/pod
/stage1
/stage1/manifest
/stage1/rootfs/init
/stage1/rootfs/opt
/stage1/rootfs/opt/stage2/${app1-name}
/stage1/rootfs/opt/stage2/${app2-name}

where:

	pod is the pod manifest file

	stage1 is a copy of the stage1 ACI that is safe for read/write

	stage1/manifest is the manifest of the stage1 ACI

	stage1/rootfs is the rootfs of the stage1 ACI

	stage1/rootfs/init is the actual stage1 binary to be executed (this path may vary according to the coreos.com/rkt/stage1/run annotation of the stage1 ACI)

	stage1/rootfs/opt/stage2 are copies of the unpacked ACIs

At this point the stage0 execs /stage1/rootfs/init with the current working directory set to the root of the new filesystem.

Stage 1

The next stage is a binary that the user trusts, and has the responsibility of taking the pod filesystem that was created by stage0, create the necessary container isolation, network, and mounts to launch the pod.
Specifically, it must:

	Read the Image and Pod Manifests. The Image Manifest defines the default exec specifications of each application; the Pod Manifest defines the ordering of the units, as well as any overrides.

	Set up/execute the actual isolation environment for the target pod, called the “stage1 flavor”. Currently there are three flavors implemented:
	fly: a simple chroot only environment.

	systemd/nspawn: a cgroup/namespace based isolation environment using systemd, and systemd-nspawn.

	kvm: a fully isolated kvm environment.

There are also out of tree stage1:

	stage1-xen [https://github.com/rkt/stage1-xen], stage1 based on the Xen hypervisor

	volo [https://github.com/lucab/rkt-volo], stage1 written in Rust, akin to stage1-fly

	docker-skim [https://github.com/coreos/docker-skim], a weaker version of stage1-fly using LD_PRELOAD tricks instead of chroot

	dgr/aci-builder [https://github.com/blablacar/dgr], a stage1 used internally by the container build and runtime tool dgr

	stage1-builder [https://github.com/kinvolk/stage1-builder], scripts and tools to generate KVM-based stage1 with customized Linux kernels

Stage 2

The final stage, stage2, is the actual environment in which the applications run, as launched by stage1.

Flavors

systemd/nspawn flavors

The “host”, “src”, and “coreos” flavors (referenced to as systemd/nspawn flavors) use systemd-nspawn, and systemd to set up the execution chain.
They include a very minimal systemd that takes care of launching the apps in each pod, apply per-app resource isolators and makes sure the apps finish in an orderly manner.

These flavors will:

	Read the image and pod manifests

	Generate systemd unit files from those Manifests

	Create and enter network namespace if rkt is not started with --net=host

	Start systemd-nspawn (which takes care of the following steps)
	Set up any external volumes

	Launch systemd as PID 1 in the pod within the appropriate cgroups and namespaces

	Have systemd inside the pod launch the app(s).

This process is slightly different for the qemu-kvm stage1 but a similar workflow starting at exec()‘ing kvm instead of an nspawn.

We will now detail how the starting, shutdown, and exit status collection of the apps in a pod are implemented internally.

Immutable vs. mutable pods

rkt supports two kinds of pod runtime environments: an immutable pod runtime environment, and a new, experimental mutable pod runtime environment.

The immutable runtime environment is currently the default, i.e. when executing any rkt prepare or rkt run command.
Once a pod has been created in this mode, no modifications can be applied.

Conversely, the mutable runtime environment allows users to add, remove, start, and stop applications after a pod has been started.
Currently this mode is only available in the experimental rkt app family of subcommands; see the app pod lifecycle documentation for a more detailed description.

Both runtime environments are supervised internally by systemd, using a custom dependency graph.
The differences between both dependency graphs are described below.

Immutable runtime environment

[image: rkt-systemd]

There’s a systemd rkt apps target (default.target) which has a Wants [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Wants=] and After [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Before=] dependency on each app’s service file, making sure they all start.
Once this target is reached, the pod is in its steady-state. This is signaled by the pod supervisor via a dedicated supervisor-ready.service, which is triggered by default.target with a Wants [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Wants=] dependency on it.

Each app’s service has a Wants dependency on an associated reaper service that deals with writing the app’s status exit.
Each reaper service has a Wants and After dependency with shutdown.service that simply shuts down the pod.

The reaper services and the shutdown.service all start at the beginning but do nothing and remain after exit (with the RemainAfterExit [http://www.freedesktop.org/software/systemd/man/systemd.service.html#RemainAfterExit=] flag).
By using the StopWhenUnneeded [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#StopWhenUnneeded=] flag, whenever they stop being referenced, they’ll do the actual work via the ExecStop command.

This means that when an app service is stopped, its associated reaper will run and will write its exit status to /rkt/status/${app} and the other apps will continue running.
When all apps’ services stop, their associated reaper services will also stop and will cease referencing shutdown.service causing the pod to exit.
Every app service has an OnFailure [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#OnFailure=] flag that starts the halt.target.
This means that if any app in the pod exits with a failed status, the systemd shutdown process will start, the other apps’ services will automatically stop and the pod will exit.
In this case, the failed app’s exit status will get propagated to rkt.

A Conflicts [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Conflicts=] dependency was also added between each reaper service and the halt and poweroff targets (they are triggered when the pod is stopped from the outside when rkt receives SIGINT).
This will activate all the reaper services when one of the targets is activated, causing the exit statuses to be saved and the pod to finish like it was described in the previous paragraph.

Mutable runtime environment

The initial mutable runtime environment is very simple and resembles a minimal systemd system without any applications installed.
Once default.target has been reached, apps can be added/removed.
Unlike the immutable runtime environment, the default.target has no dependencies on any apps, but only on supervisor-ready.service and systemd-journald.service, to ensure the journald daemon is started before apps are added.

In order for the pod to not shut down immediately on its creation, the default.target has Before and Conflicts dependencies on halt.target.
This “deadlock” state between default.target and halt.target keeps the mutable pod alive.
halt.target has After and Requires dependencies on shutdown.service.

[image: rkt-mutable]

When adding an app, the corresponding application service units [app].service and reaper-[app].service are generated (where [app] is the actual app name).
In order for the pod to not shut down when all apps stop, there is no dependency on shutdown.service.
The OnFailure behavior is the same as in an immutable environment.
When an app fails, halt.target, and shutdown.service will be started, and default.target will be stopped.

[image: rkt-mutable-app]

The following table enumerates the service unit behavior differences in the two environments:

Unit | Immutable | Mutable
——|———–|——–
shutdown.service | In Started state when the pod starts. Stopped, when there is no dependency on it (StopWhenUnneeded) or OnFailure of any app. | In Stopped state when the pod starts. Started at explicit shutdown or OnFailure of any app. |
reaper-app.service | Wants, and After dependency on shutdown.service. Conflicts, and Before dependency on halt.target. | Conflicts, and Before dependency on halt.target. |

Execution chain

We will now detail the execution chain for the stage1 systemd/nspawn flavors. The entrypoint is implemented in the stage1/init/init.go binary and sets up the following execution chain:

	“ld-linux-.so.”: Depending on the architecture the appropriate loader helper in the stage1 rootfs is invoked using “exec”. This makes sure that subsequent binaries load shared libraries from the stage1 rootfs and not from the host file system.

	“systemd-nspawn”: Used for starting the actual container. systemd-nspawn registers the started container in “systemd-machined” on the host, if available. It is parametrized with the --boot option to instruct it to “fork+exec” systemd as the supervisor in the started container.

	“systemd”: Used as the supervisor in the started container. Similar as on a regular host system, it uses “fork+exec” to execute the child app processes.

The following diagram illustrates the execution chain:

[image: execution-flow-systemd]

The resulting process tree reveals the parent-child relationships. Note that “exec”ing processes do not appear in the tree:

$ ps auxf
...
_ -bash
 _ stage1/rootfs/usr/lib/ld-linux-x86-64.so.2 stage1/rootfs/usr/bin/systemd-nspawn
 _ /usr/lib/systemd/systemd
 _ /usr/lib/systemd/systemd-journald
 _ nginx

fly flavor

The “fly” flavor uses a very simple mechanism being limited to only execute one child app process. The entrypoint is implemented in stage1_fly/run/main.go. After setting up a chroot’ed environment it simply exec’s the target app without any further internal supervision:

[image: execution-flow-fly]

The resulting example process tree shows the target process as a direct child of the invoking process:

$ ps auxf
...
_ -bash
 _ nginx

Image lifecycle

rkt commands like prepare and run, as a first step, need to retrieve all the images requested in the command line and prepare the stage2 directories with the application contents.

This is done with the following chain:

[image: image-chain]

	Fetch: in the fetch phase rkt retrieves the requested images. The fetching implementation depends on the provided image argument such as an image string/hash/https URL/file (e.g. example.com/app:v1.0).

	Store: in the store phase the fetched images are saved to the local store. The local store is a cache for fetched images and related data.

	Render: in the render phase, a renderer pulls the required images from the store and renders them so they can be easily used as stage2 content.

These three logical blocks are implemented inside rkt in this way:

[image: image-logical-blocks]

Currently rkt implements the appc [https://github.com/appc/spec] internally, converting to it from other container image formats for compatibility. In the future, additional formats like the OCI image spec [https://github.com/opencontainers/image-spec] may be added to rkt, keeping the same basic scheme for fetching, storing, and rendering application container images.

	Fetchers: Fetchers retrieve images from either a provided URL, or a URL found by image discovery [https://github.com/appc/spec/blob/master/spec/discovery.md] on a given image string. Fetchers read data from the Image Store to check if an image is already present. Once fetched, images are verified with their signatures, then saved in the Image Store. An image’s dependencies [https://github.com/appc/spec/blob/master/spec/aci.md#image-manifest-schema] are also discovered and fetched. For details, see the image fetching documentation.

	Image Store: the Image Store is used to store images (currently ACIs) and their related information.

	The render phase can be done in different ways:

	Directly render the stage1-2 contents inside a pod. This will require more disk space and more stage1-2 preparation time.

	Render in the treestore. The treestore is a cache of rendered images (currently ACIs). When using the treestore, rkt mounts an overlayfs with the treestore rendered image as its lower directory.

When using stage1-2 with overlayfs a pod will contain references to the required treestore rendered images. So there’s an hard connection between pods and the treestore.

Aci Renderer

Both stage1-2 render modes internally uses the aci renderer [https://github.com/appc/spec/tree/master/pkg/acirenderer].
Since an ACI may depend on other ones the acirenderer may require other ACIs.
The acirenderer only relies on the ACIStore, so all the required ACIs must already be available in the store.
Additionally, since appc dependencies can be found only via discovery, a dependency may be updated and so there can be multiple rendered images for the same ACI.

Given this 1:N relation between an ACI and their rendered images, the ACIStore and TreeStore are decoupled.

Logging and attaching

Applications running inside a rkt pod can produce output on stdout/stderr, which can be redirected at runtime. Optionally, they can receive input on stdin from an external component that can be attached/detached during execution.

The internal architecture for attaching (TTY and single streams) and logging is described in full details in the Logging and attaching design document.

For each application, rkt support separately configuring stdin/stdout/stderr via runtime command-line flags. The following modes are available:

	interactive: application will be run under the TTY of the parent process. A single application is allowed in the pod, which is tied to the lifetime of the parent terminal and cannot be later re-attached.

	TTY: selected I/O streams will be run under a newly allocated TTY, which can be later used for external attaching.

	streaming: selected I/O streams will be supervised by a separate multiplexing process (running in the pod context). They can be later externally attached.

	logging: selected output streams will be supervised by a separate logging process (running in the pod context). Output entries will be handled as log entries, and the application cannot be later re-attached.

	null: selected I/O streams will be closed. Application will not received the file-descriptor for the corresponding stream, and it cannot be later re-attached.

From a UI perspective, main consumers of the logging and attaching subsystem are the rkt attach subcommand and the --stdin, --stdout, --stderr runtime options.

 Update coreos flavor stage1

Update coreos flavor stage1

This guide will guide you through updating the version of the coreos flavor of stage1.
We usually want to do this to update the systemd version used by the stage1.

The process is quite manual because it’s not done often, but improvements are welcomed.

Extract the root filesystem of the image

Let’s assume you want to update CoreOS Container Linux from version 991.0.0 to version 1032.0.0.

First, you need to download and verify the image.
Make sure you trust the CoreOS Image Signing Key [https://coreos.com/security/image-signing-key/].

Since 1032.0.0 is currently only available in the Alpha channel, we’ll use the alpha URL:

$ mkdir /tmp/coreos-image
$ curl -O https://alpha.release.core-os.net/amd64-usr/1032.0.0/coreos_production_pxe_image.cpio.gz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 222M 100 222M 0 0 7769k 0 0:00:29 0:00:29 --:--:-- 7790k
$ curl -O http://alpha.release.core-os.net/amd64-usr/1032.0.0/coreos_production_pxe_image.cpio.gz.sig
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 543 100 543 0 0 495 0 0:00:01 0:00:01 --:--:-- 495
$ gpg --verify coreos_production_pxe_image.cpio.gz.sig
gpg: assuming signed data in 'coreos_production_pxe_image.cpio.gz'
gpg: Signature made Thu 28 Apr 2016 04:54:00 AM CEST using RSA key ID 1CB5FA26
gpg: checking the trustdb
gpg: marginals needed: 3 completes needed: 1 trust model: PGP
gpg: depth: 0 valid: 5 signed: 5 trust: 0-, 0q, 0n, 0m, 0f, 5u
gpg: depth: 1 valid: 5 signed: 0 trust: 3-, 0q, 0n, 0m, 2f, 0u
gpg: next trustdb check due at 2017-01-19
gpg: Good signature from "CoreOS Buildbot (Offical Builds) <buildbot@coreos.com>" [ultimate]

Then you need to extract it:

$ gunzip coreos_production_pxe_image.cpio.gz
$ cpio -i < coreos_production_pxe_image.cpio
457785 blocks
$ unsquashfs usr.squashfs
Parallel unsquashfs: Using 4 processors
13445 inodes (14861 blocks) to write

write_xattr: could not write xattr security.capability for file squashfs-root/bin/arping because you're not superuser!

write_xattr: to avoid this error message, either specify -user-xattrs, -no-xattrs, or run as superuser!

Further error messages of this type are suppressed!
[==-] 14861/14861 100%

created 12391 files
created 1989 directories
created 722 symlinks
created 0 devices
created 0 fifos

You should have now the rootfs of the image in the squashfs-root directory.

Update the manifest files

Back to the rkt repo, in the directory stage1/usr_from_coreos/manifest.d, there are some manifest files that define which files are copied from the Container Linux image to the stage1 image.

You need to go through all of them and check that the files listed correspond to files that are in the actual rootfs of the image (which we extracted in the previous step). Do this from your root directory:

for f in $(cat stage1/usr_from_coreos/manifest-amd64-usr.d/*.manifest); do
 fspath=/tmp/coreos-image/squashfs-root/$f
 if [! -e $fspath -a ! -h $fspath]; then
 echo missing: $f
 fi
done

Usually, there are some updated libraries which need an update on their version numbers.
In our case, there are no updates and all the files mentioned in the manifest are present in the updated Container Linux image.

Update the coreos flavor version used by the build system

In the file stage1/usr_from_coreos/coreos-common.mk, we define which Container Linux image version we use for the coreos flavor.
Update CCN_IMG_RELEASE to 1032.0.0 and CCN_SYSTEMD_VERSION to the systemd version shipped with the image (in our case, v229).

diff --git a/stage1/usr_from_coreos/coreos-common.mk b/stage1/usr_from_coreos/coreos-common.mk
index b5bfa77..f864f56 100644
--- a/stage1/usr_from_coreos/coreos-common.mk
+++ b/stage1/usr_from_coreos/coreos-common.mk
@@ -9,9 +9,9 @@ _CCN_INCLUDED_ := x
 $(call setup-tmp-dir,CCN_TMPDIR)

 # systemd version in coreos image
-CCN_SYSTEMD_VERSION := v225
+CCN_SYSTEMD_VERSION := v229
 # coreos image version
-CCN_IMG_RELEASE := 991.0.0
+CCN_IMG_RELEASE := 1032.0.0
 # coreos image URL
 CCN_IMG_URL := https://alpha.release.core-os.net/amd64-usr/$(CCN_IMG_RELEASE)/coreos_production_pxe_image.cpio.gz
 # path to downloaded pxe image

Check that things work

Once you’re finished updating the manifest files and coreos-common.mk, we’ll do some sanity checks.

First, do a clean build.

Test all binaries

Make sure that every binary links:

for f in $(cat stage1/usr_from_coreos/manifest-amd64-usr.d/*.manifest); do
 if [[$f =~ ^bin/]]; then
 sudo chroot build*/aci-for-coreos-flavor/rootfs /usr/lib64/ld-linux-x86-64.so.2 --list $f >/dev/null
 st=$?
 if [$st -ne 0] ; then
 echo $f failed with exit code $st
 break
 fi
 fi
done

run rkt

Run a quick smoketest:

sudo build*/target/bin/rkt run quay.io/coreos/alpine-sh

Fixing errors

If there are some new libraries missing from the image, you need to add them to the correspoding manifest file.

For example, this update breaks systemd.
When you try to run rkt, you get this error:

/usr/lib/systemd/systemd: error while loading shared libraries: libpam.so.0: cannot open shared object file: No such file or directory

This means that we need to add libpam to the systemd manifest file:

diff --git a/stage1/usr_from_coreos/manifest.d/systemd.manifest b/stage1/usr_from_coreos/manifest.d/systemd.manifest
index fca30bb..51d5fbc 100644
--- a/stage1/usr_from_coreos/manifest.d/systemd.manifest
+++ b/stage1/usr_from_coreos/manifest.d/systemd.manifest
@@ -61,6 +61,9 @@ lib64/libmount.so.1
 lib64/libmount.so.1.1.0
 lib64/libnss_files-2.21.so
 lib64/libnss_files.so.2
+lib64/libpam.so
+lib64/libpam.so.0
+lib64/libpam.so.0.84.1
 lib64/libpcre.so
 lib64/libpcre.so.1
 lib64/libpcre.so.1.2.4

Then build and test again.

 Stage1 ACI implementor’s guide

Stage1 ACI implementor’s guide

Background

rkt’s execution of pods is divided roughly into three separate stages:

	Stage 0: discovering, fetching, verifying, storing, and compositing of both application (stage2) and stage1 images for execution.

	Stage 1: execution of the stage1 image from within the composite image prepared by stage0.

	Stage 2: execution of individual application images within the containment afforded by stage1.

This separation of concerns is reflected in the file-system and layout of the composite image prepared by stage0:

	Stage 0: rkt executable, and the pod manifest created at /var/lib/rkt/pods/prepare/$uuid/pod.

	Stage 1: stage1.aci, made available at /var/lib/rkt/pods/run/$uuid/stage1 by rkt run.

	Stage 2: $app.aci, made available at /var/lib/rkt/pods/run/$uuid/stage1/rootfs/opt/stage2/$appname by rkt run, where $appname is the name of the app in the pod manifest.

The stage1 implementation is what creates the execution environment for the contained applications.
This occurs via entrypoints from stage0 on behalf of rkt run and rkt enter.
These entrypoints are executable programs located via annotations from within the stage1 ACI manifest, and executed from within the stage1 of a given pod at /var/lib/rkt/pods/$state/$uuid/stage1/rootfs.

Stage2 is the deployed application image.
Stage1 is the vehicle for getting there from stage0.
For any given pod instance, stage1 may be replaced by a completely different implementation.
This allows users to employ different containment strategies on the same host running the same interchangeable ACIs.

Entrypoints

rkt run

coreos.com/rkt/stage1/run

	rkt prepares the pod’s stage1 and stage2 images and pod manifest under /var/lib/rkt/pods/prepare/$uuid, acquiring an exclusive advisory lock on the directory.
Upon a successful preparation, the directory will be renamed to /var/lib/rkt/pods/run/$uuid.

	chdirs to /var/lib/rkt/pods/run/$uuid.

	resolves the coreos.com/rkt/stage1/run entrypoint via annotations found within /var/lib/rkt/pods/run/$uuid/stage1/manifest.

	executes the resolved entrypoint relative to /var/lib/rkt/pods/run/$uuid/stage1/rootfs.

It is the responsibility of this entrypoint to consume the pod manifest and execute the constituent apps in the appropriate environments as specified by the pod manifest.

The environment variable RKT_LOCK_FD contains the file descriptor number of the open directory handle for /var/lib/rkt/pods/run/$uuid.
It is necessary that stage1 leave this file descriptor open and in its locked state for the duration of the rkt run.

In the bundled rkt stage1 which includes systemd-nspawn and systemd, the entrypoint is a static Go program found at /init within the stage1 ACI rootfs.
The majority of its execution entails generating a systemd-nspawn argument list and writing systemd unit files for the constituent apps before executing systemd-nspawn.
Systemd-nspawn then boots the stage1 systemd with the just-written unit files for launching the contained apps.
The /init program’s primary job is translating a pod manifest to systemd-nspawn systemd.services.

An alternative stage1 could forego systemd-nspawn and systemd altogether, or retain these and introduce something like novm or qemu-kvm for greater isolation by first starting a VM.
All that is required is an executable at the place indicated by the coreos.com/rkt/stage1/run entrypoint that knows how to apply the pod manifest and prepared ACI file-systems.

The resolved entrypoint must inform rkt of its PID for the benefit of rkt enter.
Stage1 implementors have two options for doing so; only one must be implemented:

	/var/lib/rkt/pods/run/$uuid/pid: the PID of the process that will be given to the “enter” entrypoint.

	/var/lib/rkt/pods/run/$uuid/ppid: the PID of the parent of the process that will be given to the “enter” entrypoint. That parent process must have exactly one child process.

The entrypoint of a stage1 may also optionally inform rkt of the “pod cgroup”, the name=systemd cgroup the pod’s applications are expected to reside under, via the subcgroup file. If this file is written, it must be written before the pid or ppid files are written. This information is useful for any external monitoring system that wishes to reliably link a given cgroup to its associated rkt pod. The file should be written in the pod directory at /var/lib/rkt/pods/run/$uuid/subcgroup.

The file’s contents should be a text string, for example of the form machine-rkt\xuuid.scope, which will match the control in the cgroup hierarchy of the ppid or pid of the pod.

Any stage1 that supports and expects machined registration to occur will likely want to write such a file.

Arguments

	--debug to activate debugging

	--net[=$NET1,$NET2,...] to configure the creation of a contained network.
See the rkt networking documentation for details.

	--mds-token=$TOKEN passes the auth token to the apps via AC_METADATA_URL env var

	--interactive to run a pod interactively, that is, pass standard input to the application (only for pods with one application)

	--local-config=$PATH to override the local configuration directory

	--private-users=$SHIFT to define a UID/GID shift when using user namespaces. SHIFT is a two-value colon-separated parameter, the first value is the host UID to assign to the container and the second one is the number of host UIDs to assign.

	--mutable activates a mutable environment in stage1. If the stage1 image manifest has no app entrypoint annotations declared, this flag will be unset to retain backwards compatibility.

Arguments added in interface version 2

	--hostname=$HOSTNAME configures the host name of the pod. If empty, it will be “rkt-$PODUUID”.

Arguments added in interface version 3

	--disable-capabilities-restriction gives all capabilities to apps (overrides retain-set and remove-set)

	--disable-paths disables inaccessible and read-only paths (such as /proc/sysrq-trigger)

	--disable-seccomp disables seccomp (overrides retain-set and remove-set)

Arguments added in interface version 4

	--dns-conf-mode=resolv=(host|stage0|none|default),hosts=(host|stage0|default): Configures how the stage1 should set up
the DNS configuration files /etc/resolv.conf and /etc/hosts. For all, host means to bind-mount the host’s
version of that file. none means the stage1 should not create it. stage0 means the stage0 has created an entry
in the stage1’s rootfs, which should be exposed in the apps. default means the standard behavior, which for
resolv.conf is to create /etc/rkt-resolv.conf iff a CNI plugin specifies it, and for hosts is to create
a fallback if the app does not provide it.

Arguments added in interface version 5 (experimental)

This interface version is not yet finalized, thus marked as experimental.

	--mutable to run a mutable pod

rkt enter

coreos.com/rkt/stage1/enter

	rkt verifies the pod and image to enter are valid and running

	chdirs to /var/lib/rkt/pods/run/$uuid

	resolves the coreos.com/rkt/stage1/enter entrypoint via annotations found within /var/lib/rkt/pods/run/$uuid/stage1/manifest

	executes the resolved entrypoint relative to /var/lib/rkt/pods/run/$uuid/stage1/rootfs

In the bundled rkt stage1, the entrypoint is a statically-linked C program found at /enter within the stage1 ACI rootfs.
This program enters the namespaces of the systemd-nspawn container’s PID 1 before executing the /enterexec program.
enterexec then chroots into the ACI’s rootfs, loading the application and its environment.

An alternative stage1 would need to do whatever is appropriate for entering the application environment created by its own coreos.com/rkt/stage1/run entrypoint.

Arguments

	--pid=$PID passes the PID of the process that is PID 1 in the container.
rkt finds that PID by one of the two supported methods described in the rkt run section.

	--appname=$NAME passes the app name of the specific application to enter.

	the separator --

	cmd to execute.

	optionally, any cmd arguments.

rkt gc

coreos.com/rkt/stage1/gc

The gc entrypoint deals with garbage collecting resources allocated by stage1.
For example, it removes the network namespace of a pod.

Arguments

	--debug to activate debugging

	UUID of the pod

Arguments added in interface version 5

	--local-config: The rkt configuration directory - defaults to /etc/rkt if not supplied.

rkt stop

coreos.com/rkt/stage1/stop

The optional stop entrypoint initiates an orderly shutdown of stage1.

In the bundled rkt stage 1, the entrypoint is sending SIGTERM signal to systemd-nspawn. For kvm flavor, it is calling systemctl halt on the container (through SSH).

Arguments

	--force to force the stopping of the pod. E.g. in the bundled rkt stage 1, stop sends SIGKILL

	UUID of the pod

Crossing Entrypoints

Some entrypoints need to perform actions in the context of stage1 or stage2. As such they need to cross stage boundaries (thus the name) and depend on the enter entrypoint existence. All crossing entrypoints receive additional options for entering via the following environmental flags:

	RKT_STAGE1_ENTERCMD specify the command to be called to enter a stage1 or a stage2 environment

	RKT_STAGE1_ENTERPID specify the PID of the stage1 to enter

	RKT_STAGE1_ENTERAPP optionally specify the application name of the stage2 to enter

rkt app add

(Experimental, to be stabilized in version 5)

coreos.com/rkt/stage1/app/add

This is a crossing entrypoint.

Arguments

	--app application name

	--debug to activate debugging

	--uuid UUID of the pod

	--disable-capabilities-restriction gives all capabilities to apps (overrides retain-set and remove-set)

	--disable-paths disables inaccessible and read-only paths (such as /proc/sysrq-trigger)

	--disable-seccomp disables seccomp (overrides retain-set and remove-set)

	--private-users=$SHIFT to define a UID/GID shift when using user namespaces. SHIFT is a two-value colon-separated parameter, the first value is the host UID to assign to the container and the second one is the number of host UIDs to assign.

rkt app start

(Experimental, to be stabilized in version 5)

coreos.com/rkt/stage1/app/start

This is a crossing entrypoint.

Arguments

	--app application name

	--debug to activate debugging

rkt app stop

(Experimental, to be stabilized in version 5)

coreos.com/rkt/stage1/app/stop

This is a crossing entrypoint.

Arguments

	--app application name

	--debug to activate debugging

rkt app rm

(Experimental, to be stabilized in version 5)

coreos.com/rkt/stage1/app/rm

This is a crossing entrypoint.

Arguments

	--app application name

	--debug to activate debugging

rkt attach

(Experimental, to be stabilized in version 5)

coreos.com/rkt/stage1/attach

This is a crossing entrypoint.

Arguments

	--action action to perform (auto-attach, custom-attach or list)

	--app application name

	--debug to activate debugging

	--tty-in whether to attach TTY input (true or false)

	--tty-out whether to attach TTY output (true or false)

	--stdin whether to attach stdin (true or false)

	--stdout whether to attach stdout (true or false)

	--stderr whether to attach stderr (true or false)

Stage1 Metadata

Versioning

The stage1 command line interface is versioned using an annotation with the name coreos.com/rkt/stage1/interface-version.
If the annotation is not present, rkt assumes the version is 1.

Examples

Stage1 ACI manifest

{
 "acKind": "ImageManifest",
 "acVersion": "0.8.10",
 "name": "foo.com/rkt/stage1",
 "labels": [
 {
 "name": "version",
 "value": "0.0.1"
 },
 {
 "name": "arch",
 "value": "amd64"
 },
 {
 "name": "os",
 "value": "linux"
 }
],
 "annotations": [
 {
 "name": "coreos.com/rkt/stage1/run",
 "value": "/ex/run"
 },
 {
 "name": "coreos.com/rkt/stage1/enter",
 "value": "/ex/enter"
 },
 {
 "name": "coreos.com/rkt/stage1/gc",
 "value": "/ex/gc"
 },
 {
 "name": "coreos.com/rkt/stage1/stop",
 "value": "/ex/stop"
 },
 {
 "name": "coreos.com/rkt/stage1/interface-version",
 "value": "2"
 }
]
}

Runtime Metadata

Pods and applications can be annotated at runtime to signal support for specific features.

Mutable pods (experimental v5)

Stage1 images can support mutable pod environments, where, once a pod has been started, applications can be added/started/stopped/removed while the actual pod is running. This information is persisted at runtime in the pod manifest using the coreos.com/rkt/stage1/mutable annotation.

If the annotation is not present, false is assumed.

Attachable applications (experimental v5)

Stage1 images can support attachable applications, where I/O and TTY from each applications can be dynamically redirected and attached to.
In that case, this information is persisted at runtime in each application manifest using the following annotations:

	coreos.com/rkt/stage2/stdin

	coreos.com/rkt/stage2/stdout

	coreos.com/rkt/stage2/stderr

Filesystem Layout Assumptions

The following paths are reserved for the stage1 image, and they will be populated at runtime.
When creating a stage1 image, developers SHOULD NOT use these paths to store content in the image’s filesystem.

stage2

opt/stage2

This directory path is used for extracting the ACI of every app in the pod.
Each app’s rootfs will appear under this directory,
e.g. /var/lib/rkt/pods/run/$uuid/stage1/rootfs/opt/stage2/$appname/rootfs.

status

rkt/status

This directory path is used for storing the apps’ exit statuses.
For example, if an app named foo exits with status = 42, stage1 should write 42
in /var/lib/rkt/pods/run/$uuid/stage1/rootfs/rkt/status/foo.
Later the exit status can be retrieved and shown by rkt status $uuid.

env

rkt/env

This directory path is used for passing environment variables to each app.
For example, environment variables for an app named foo will be stored in rkt/env/foo.

iottymux (experimental v5)

rkt/iottymux

This directory path is used for TTY and streaming attach helper.
When attach mode is enabled each application will have a rkt/iottymux/$appname/ directory, used by the I/O and TTY mux sidecar.

supervisor-status (experimental v5)

rkt/supervisor-status

This path is used by the pod supervisor to signal its readiness.
Once the supervisor in the pod has reached its ready state, it MUST write a rkt/supervisor-status -> ready symlink.
A symlink missing or pointing to a different target means that the pod supervisor is not ready.

 Logging and attaching design

Logging and attaching design

Overview

rkt can run multiple applications in a pod, under a supervising process and alongside with a sidecar service which takes care of multiplexing its I/O toward the outside world.

Historically this has been done via systemd-journald only, meaning that all logging was handled via journald and interactive applications had to re-use a parent TTY.

Starting from systemd v232, it is possible to connect a service streams to arbitrary socket units and let custom sidecar multiplex all the I/O.

This document describes the architectural design for the current logging and attaching subsystem, which allows custom logging and attaching logic.

Runtime modes

In order to be able to attach or apply custom logging logic to applications, an appropriate runtime mode must be specified when adding/preparing an application inside a pod.

This is done via stage0 CLI arguments (--stdin, --stdout, and --stder) which translate into per-application stage2 annotations.

Interactive mode

This mode results in the application having the corresponding stream attached to the parent terminal.

For historical reasons and backward compatibility, this is a special mode activated via --interactive and only supports single-app pods.

Interactive mode does not support attaching and ties the runtime to the lifetime of the parent terminal.

Internally, this translates to an annotation at the app level:

{
 "name": "coreos.com/rkt/stage2/stdin",
 "value": "interactive"
},
{
 "name": "coreos.com/rkt/stage2/stdout",
 "value": "interactive"
},
{
 "name": "coreos.com/rkt/stage2/stderr",
 "value": "interactive"
}

In this case, the corresponding service unit file gains the following properties:

[Service]
StandardInput=tty
StandardOutput=tty
StandardError=tty
...

No further sidecar dependencies are introduced in this case.

TTY mode

This mode results in the application having the corresponding stream attached to a dedicated pseudo-terminal.

This is different from the “interactive” mode because:

	it allocates a new pseudo-terminal accounted towards pod resources

	it supports external attaching/detaching

	it supports multiple applications running inside a single pod

	it does not tie the pod lifetime to the parent terminal one

Internally, this translates to an annotation at the app level:

{
 "name": "coreos.com/rkt/stage2/stdin",
 "value": "tty"
},
{
 "name": "coreos.com/rkt/stage2/stdout",
 "value": "tty"
},
{
 "name": "coreos.com/rkt/stage2/stderr",
 "value": "tty"
}

In this case, the corresponding service unit file gains the following properties:

[Service]
TTYPath=/rkt/iomux/<appname>/stage2-pts
StandardInput=tty
StandardOutput=tty
StandardError=tty
...

A sidecar dependency to ttymux@.service is introduced in this case. Application has a Wants= and After= relationship to it.

Streaming mode

This mode results in the application having each of the corresponding streams separately handled by a muxing service.

This is different from the “interactive” and “tty” modes because:

	it does not allocate any terminal for the application

	single streams can be separately handled

	it supports multiple applications running inside a single pod

Internally, this translates to an annotation at the app level:

{
 "name": "coreos.com/rkt/stage2/stdin",
 "value": "stream"
},
{
 "name": "coreos.com/rkt/stage2/stdout",
 "value": "stream"
},
{
 "name": "coreos.com/rkt/stage2/stderr",
 "value": "stream"
}

In this case, the corresponding service unit file gains the following properties:

[Service]
StandardInput=fd
Sockets=<appname>-stdin.socket
StandardOutput=fd
Sockets=<appname>-stdout.socket
StandardError=fd
Sockets=<appname>-stderr.socket
...

A sidecar dependency to iomux@.service is introduced in this case. Application has a Wants= and Before= relationship to it.

Additional per-stream socket units are generated, as follows:

[Unit]
Description=<stream> socket for <appname>
DefaultDependencies=no
StopWhenUnneeded=yes
RefuseManualStart=yes
RefuseManualStop=yes
BindsTo=<appname>.service

[Socket]
RemoveOnStop=yes
Service=<appname>.service
FileDescriptorName=<stream>
ListenFIFO=/rkt/iottymux/<appname>/stage2-<stream>

Logging mode

This mode results in the application having the corresponding stream attached to systemd-journald.

This is the default mode for stdout/stderr, for historical reasons and backward compatibility.

Internally, this translates to an annotation at the app level:

{
 "name": "coreos.com/rkt/stage2/stdout",
 "value": "log"
},
{
 "name": "coreos.com/rkt/stage2/stderr",
 "value": "log"
}

In this case, the corresponding service unit file gains the following properties:

[Service]
StandardOutput=journal
StandardError=journal
...

A sidecar dependency to systemd-journald.service is introduced in this case. Application has a Wants= and After= relationship to it.

Logging is not a valid mode for stdin.

Null mode

This mode results in the application having the corresponding stream closed.

This is the default mode for stdin, for historical reasons and backward compatibility.

Internally, this translates to an annotation at the app level:

{
 "name": "coreos.com/rkt/stage2/stdin",
 "value": "null"
},
{
 "name": "coreos.com/rkt/stage2/stdout",
 "value": "null"
},
{
 "name": "coreos.com/rkt/stage2/stderr",
 "value": "null"
}

In this case, the corresponding service unit file gains the following properties:

[Service]
StandardInput=null
StandardOutput=null
StandardError=null
[...]

No further sidecar dependencies are introduced in this case.

Annotations

The following per-app annotations are defined for internal use, with the corresponding set of allowed values:

	coreos.com/rkt/stage2/stdin
	interactive

	null

	stream

	tty

	coreos.com/rkt/stage2/stdout
	interactive

	log

	null

	stream

	tty

	coreos.com/rkt/stage2/stderr
	interactive

	log

	null

	stream

	tty

Stage1 internals

All the logging and attaching logic is handled by the stage1 iottymux binary.

Each main application may additionally have a dedicated sidecar for I/O multiplexing, which proxies I/O to external clients over sockets.

Sidecar state is persisted at /rkt/iottymux/<appname> while the main application is running.

Attaching

rkt attach can auto-discover endpoints, by reading the content of status file located at /rkt/iottymux/<appname>/endpoints.

This file provides a versioned JSON document, whose content varies depending on the I/O for the specific application.

For example, an application with all streams available for attaching will have a status file similar to the following:

{
 "version": 1,
 "targets": [
 {
 "name": "stdin",
 "domain": "unix",
 "address": "/rkt/iottymux/alpine-sh/sock-stdin"
 },
 {
 "name": "stdout",
 "domain": "unix",
 "address": "/rkt/iottymux/alpine-sh/sock-stdout"
 },
 {
 "name": "stderr",
 "domain": "unix",
 "address": "/rkt/iottymux/alpine-sh/sock-stderr"
 }
]
}

Endpoint listing

Its --mode=list option just read the file and print it back to the user.

Automatic attaching

rkt attach --mode=auto performs the auto-discovery mechanism described above, and the proceed to attach stdin/stdour/stderr of the current process (itself) to all available corresponding endpoints.

This the default attaching mode.

Custom attaching

rkt attach --mode=<stream> performs the auto-discovery mechanism described above, and the proceed to the corresponding available endpoints.

Logging

Journald

This is the default output multiplexer for stdout/stderr in logging mode, for historical reasons and backward compatibility.

Restrictions:

	requires journalctl (or similar libsystemd-based helper) to decode output entries

	requires a libsystemd on the host compiled with LZ4 support

	systemd-journald does not support distinguishing between entries from stdout and stderr

Experimental logging modes

TODO(lucab): k8s logmode

Sidecars

systemd-journald

This is the standard systemd-journald service. It is the default output handler for the “logging” mode.

iottymux

iottymux is a multi-purpose stage1 binary. It currently serves the following purposes:

	Multiplex I/O over TTY (in TTY mode)

	Multiplex I/O from streams (in streaming mode)

	Attach to existing attachable applications (in TTY or streaming mode)

iomux

This component takes care of multiplexing dedicated streams and receiving clients for attaching.

It is started as an instance of the templated iomux@.service service by a Before= dependency from the application.

Internally, it attaches to available FIFOs and proxies them to separate sockets for external clients.

It is implemented as a sub-action of the main iottymux binary and completely run in stage1 context.

ttymux

This component takes care of multiplexing TTY and receiving clients for attaching.

It is started as an instance of the templated ttymux@.service service by a After= dependency from the application.

Internally, it creates a pesudo-tty pair (whose slave is used by the main application) and proxies the master to a socket for external clients.

It is implemented as a sub-action of the main iottymux binary and completely run in stage1 context.

iottymux-attach

This component takes care of discovering endpoints and attaching to them, both for TTY and streaming modes.

It is invoked by the “stage1” attach entrypoint and completely run in stage1 context. It is implemented as a sub-action of the main iottymux binary.

 rkt run

rkt run

Image Addressing

Images can be run by either their name, their hash, an explicit transport address, or a Docker registry URL.
rkt will automatically fetch them if they’re not present in the local store.

Run By Name

rkt run coreos.com/etcd:v2.0.0

Run By Hash

rkt run sha512-fa1cb92dc276b0f9bedf87981e61ecde

Run By ACI Address

rkt run https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci

Run From a Docker Registry

rkt --insecure-options=image run docker://quay.io/coreos/etcd:v2.0.0

Run multiple applications in the same pod

Multiple applications can be run in a pod by passing multiple images to the run command:

rkt run example.com/app1 example.com/app2

Overriding the app’s name

Be default, the image’s name will be used as the app’s name.
It can be overridden by rkt using the --name flag.
This comes handy when we want to run multiple apps using the same image:

rkt --insecure-options=image run docker://busybox --name=busybox1 docker://busybox --name=busybox2

Overriding Executable to launch

Application images include an exec field that specifies the executable to launch.
This executable can be overridden by rkt using the --exec flag:

rkt --insecure-options=image run docker://busybox --exec /bin/date

Overriding Isolators

Application images can include per-app isolators and some of them can be overridden by rkt.
The units come from the Kubernetes resource model [https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/design/resources.md].
In the following example, the CPU isolator is defined to 750 milli-cores and the memory isolator limits the memory usage to 128MB.

rkt run coreos.com/etcd:v2.0.0 --cpu=750m --memory=128M

Overriding User/Group

Application images must specify the username/group or the UID/GID the app is to be run as as specified in the Image Manifest Schema [https://github.com/appc/spec/blob/master/spec/aci.md#image-manifest-schema]. The user/group can be overridden by rkt using the --user and --group flags:

rkt --insecure-options=image run docker://busybox --user=1000 --group=100 --exec id

Passing Arguments

To pass additional arguments to images use the pattern of image1 -- [image1 flags] --- image2 -- [image2 flags].
For example:

rkt run example.com/worker -- --loglevel verbose --- example.com/syncer -- --interval 30s

This can be combined with overridden executables:

rkt run example.com/worker --exec /bin/ov -- --loglevel verbose --- example.com/syncer --exec /bin/syncer2 -- --interval 30s

Adding user annotations and user labels

Additional annotations and labels can be added to the app by using --user-annotation and --user-label flag.
The annotations and labels will appear in the app’s UserAnnotations and UserLabels field.

rkt run example.com/example --user-annotation=foo=bar --user-label=hello=world

Influencing Environment Variables

To inherit all environment variables from the parent, use the --inherit-env flag.

To explicitly set environment variables for all apps, use the --set-env flag.

To explicitly set environment variables for all apps from a file, use the --set-env-file flag.
Variables are expected to be in the format VAR_NAME=VALUE separated by the new line character \n.
Lines starting with # or ; and empty ones will be ignored.

To explicitly set environment variables for each app individually, use the --environment flag.

The precedence is as follows with the last item replacing previous environment entries:

	Parent environment

	App image environment

	Explicitly set environment variables for all apps from file (--set-env-file)

	Explicitly set environment variables for all apps on command line (--set-env)

	Explicitly set environment variables for each app on command line (--environment)

export EXAMPLE_ENV=hello
export EXAMPLE_OVERRIDE=under
rkt run --inherit-env --set-env=FOO=bar --set-env=EXAMPLE_OVERRIDE=over example.com/env-printer
EXAMPLE_ENV=hello
FOO=bar
EXAMPLE_OVERRIDE=over

export EXAMPLE_ENV=hello
export EXAMPLE_OVERRIDE=under
rkt run --inherit-env --set-env=FOO=bar --set-env=EXAMPLE_OVERRIDE=over example.com/env-printer --environment=EXAMPLE_OVERRIDE=ride
EXAMPLE_ENV=hello
FOO=bar
EXAMPLE_OVERRIDE=ride

Disable Signature Verification

If desired, --insecure-options=image can be used to disable this security check:

rkt --insecure-options=image run coreos.com/etcd:v2.0.0
rkt: searching for app image coreos.com/etcd:v2.0.0
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
rkt: warning: signature verification has been disabled
...

Mount Volumes into a Pod

Each ACI can define a list of mount points [https://github.com/appc/spec/blob/master/spec/aci.md#image-manifest-schema] that the app is expecting external data to be mounted into:

{
 "acKind": "ImageManifest",
 "name": "example.com/app1",
 ...
 "app": {
 ...
 "mountPoints": [
 {
 "name": "data",
 "path": "/var/data",
 "readOnly": false,
 "recursive": true
 }
]
 }
 ...
}

To fulfill these mount points, volumes are used.
A volume is assigned to a mount point if they both have the same name.
There are today two kinds of volumes:

	host volumes that can expose a directory or a file from the host to the pod.

	empty volumes that initialize an empty storage to be accessed locally within the pod. When the pod is garbage collected, it will be removed.

Each volume can be selectively mounted into each application at differing mount points.
Note that any volumes that are specified but do not have a matching mount point (or --mount flag) will be silently ignored.

If a mount point is specified in the image manifest but no matching volume is found, an implicit empty volume will be created automatically.

Mounting Volumes

Volumes are defined via the --volume flag, the volume is then mounted into each app running in the pod based on information defined in the ACI manifest.

There are two kinds of volumes, host and empty.

Host Volumes

For host volumes, the --volume flag allows you to specify the volume name, the location on the host, and whether the volume is read-only or not.
The volume name and location on the host are mandatory.
The read-only parameter is false by default.

Syntax:

--volume NAME,kind=host,source=SOURCE_PATH,readOnly=BOOL

In the following example, we make the host’s /srv/data accessible to app1 on /var/data:

rkt run --volume data,kind=host,source=/srv/data,readOnly=false example.com/app1

If you don’t intend to persist the data and you just want to have a volume shared between all the apps in the pod, you can use an empty volume:

rkt run --volume data,kind=empty,readOnly=false example.com/app1

Empty Volumes

For empty volumes, the --volume flag allows you to specify the volume name, and the mode, UID and GID of the generated volume.
The volume name is mandatory.
By default, mode is 0755, UID is 0 and GID is 0.

Syntax:

--volume NAME,kind=empty,mode=MODE,uid=UID,gid=GID

In the following example, we create an empty volume for app1’s /var/data:

rkt run --volume data,kind=empty,mode=0700,uid=0,gid=0

Mounting Volumes without Mount Points

If the ACI doesn’t have any mount points defined in its manifest, you can still mount volumes using the --mount flag.

With --mount you define a mapping between volumes and a path in the app.
This will supplement and override any mount points in the image manifest.
In the following example, the --mount option is positioned after the app name; it defines the mount only in that app:

rkt run --volume logs,kind=host,source=/srv/logs \
 example.com/app1 --mount volume=logs,target=/var/log \
 example.com/app2 --mount volume=logs,target=/opt/log

In the following example, the --mount option is positioned before the app names.
It defines mounts on all apps: both app1 and app2 will have /srv/logs accessible on /var/log.

rkt run --volume logs,kind=host,source=/srv/logs \
 --mount volume=data,target=/var/log \
 example.com/app1 example.com/app2

MapReduce Example

Let’s say we want to read data from the host directory /opt/tenant1/work to power a MapReduce-style worker.
We’ll call this app example.com/reduce-worker.

We also want this data to be available to a backup application that runs alongside the worker (in the same pod).
We’ll call this app example.com/worker-backup.
The backup application only needs read-only access to the data.

Below we show the abbreviated manifests for the respective applications (recall that the manifest is bundled into the application’s ACI):

{
 "acKind": "ImageManifest",
 "name": "example.com/reduce-worker",
 ...
 "app": {
 ...
 "mountPoints": [
 {
 "name": "work",
 "path": "/var/lib/work",
 "readOnly": false
 }
],
 ...
 }
 ...
}

{
 "acKind": "ImageManifest",
 "name": "example.com/worker-backup",
 ...
 "app": {
 ...
 "mountPoints": [
 {
 "name": "work",
 "path": "/backup",
 "readOnly": true
 }
],
 ...
 }
 ...
}

In this case, both apps reference a volume they call “work”, and expect it to be made available at /var/lib/work and /backup within their respective root filesystems.

Since they reference the volume using an abstract name rather than a specific source path, the same image can be used on a variety of different hosts without being coupled to the host’s filesystem layout.

To tie it all together, we use the rkt run command-line to provide them with a volume by this name. Here’s what it looks like:

rkt run --volume=work,kind=host,source=/opt/tenant1/work \
 example.com/reduce-worker \
 example.com/worker-backup

If the image didn’t have any mount points, you can achieve a similar effect with the --mount flag (note that both would be read-write though):

rkt run --volume=work,kind=host,source=/opt/tenant1/work \
 example.com/reduce-worker --mount volume=work,target=/var/lib/work \
 example.com/worker-backup --mount volume=work,target=/backup

Now when the pod is running, the two apps will see the host’s /opt/tenant1/work directory made available at their expected locations.

Enabling metadata service registration

By default, rkt run will not register the pod with the metadata service.
You can enable registration with the --mds-register command line option.

Pod Networking

The run subcommand features the --net argument which takes options to configure the pod’s network.

Default contained networking

When the argument is not given, --net=default is automatically assumed and the default contained network will be loaded.

Host networking

Simplified, with --net=host the apps within the pod will share the network stack and the interfaces with the host machine.

rkt run --net=host coreos.com/etcd:v2.0.0

Strictly seen, this is only true when rkt run is invoked on the host directly, because the network stack will be inherited from the process that is invoking the rkt run command.

Other Networking Examples

More details about rkt’s networking options and examples can be found in the networking documentation.

Run rkt as a Daemon

rkt doesn’t include any built-in support for running as a daemon.
However, since it is a regular process, you can use your init system to achieve the same effect.

For example, if you use systemd, you can run rkt using systemd-run.

If you don’t use systemd, you can use daemon [http://www.libslack.org/daemon/] as an alternative.

Use a Custom Stage1

rkt is designed and intended to be modular, using a staged architecture.

You can use a custom stage1 by using the --stage1-{url,path,name,hash,from-dir} flags.

rkt --stage1-path=/tmp/stage1.aci run coreos.com/etcd:v2.0.0

rkt expects stage1 images to be signed except in the following cases:

	it is the default stage1 image and it’s in the same directory as the rkt binary

	--stage1-{name,hash} is used and the image is already in the store

	--stage1-{url,path,from-dir} is used and the image is in the default directory configured at build time

For more details see the hacking documentation.

Disabling overlay

rkt uses overlayfs by default when running application containers. This provides immense benefits to performance and efficiency: start times for large containers are much faster, and multiple pods using the same images will consume less disk space and can share page cache entries.

This feature will be disabled automatically if the underlying filesystem does not support overlay fs, see the prepare subcommand for details. This feature can also be explicitly disabled with the --no-overlay option:

rkt run --no-overlay=true --insecure-options=image coreos.com/etcd:v2.0.0

Options

Flag	Default	Options	Description
—	—	—	—
--caps-remove	none	capability to remove (e.g. --caps-remove=CAP_SYS_CHROOT,CAP_MKNOD)	Capabilities to remove from the process’s capabilities bounding set; all others from the default set will be included.
--caps-retain	none	capability to retain (e.g. --caps-retain=CAP_SYS_ADMIN,CAP_NET_ADMIN)	Capabilities to retain in the process’s capabilities bounding set; all others will be removed.
--cpu	none	CPU units (e.g. --cpu=500m)	CPU limit for the preceding image in Kubernetes resource model [https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/design/resources.md] format.
--dns	none	IP Address	Name server to write in /etc/resolv.conf. It can be specified several times.
--dns-domain	none	DNS domain (e.g., --dns-domain=example.com)	DNS domain to write in /etc/resolv.conf.
--dns-opt	none	DNS option	DNS option from resolv.conf(5) to write in /etc/resolv.conf. It can be specified several times.
--dns-search	none	Domain name	DNS search domain to write in /etc/resolv.conf. It can be specified several times.
--environment	none	environment variables add to the app’s environment variables	Set the app’s environment variables (example: ‘–environment=foo=bar’).
--exec	none	Path to executable	Override the exec command for the preceding image.
--group	root	gid, groupname or file path (e.g. --group=core)	Group override for the preceding image.
--hosts-entry	none	an /etc/hosts entry within the container (e.g., --hosts-entry=10.2.1.42=db)	Entries to add to the pod-wide /etc/hosts. Pass ‘host’ to use the host’s /etc/hosts.
--hostname	rkt-$PODUUID	A host name	Set pod’s host name.
--inherit-env	false	true or false	Inherit all environment variables not set by apps.
--interactive	false	true or false	Run pod interactively. If true, only one image may be supplied.
--mds-register	false	true or false	Register pod with metadata service. It needs network connectivity to the host (--net as default, default-restricted, or host).
--memory	none	Memory units (e.g. --memory=50M)	Memory limit for the preceding image in Kubernetes resource model [https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/design/resources.md] format.
--mount	none	Mount syntax (e.g. --mount volume=NAME,target=PATH)	Mount point binding a volume to a path within an app. See Mounting Volumes without Mount Points.
--name	none	Name of the app	Set the name of the app (example: ‘–name=foo’). If not set, then the app name default to the image’s name
--net	default	A comma-separated list of networks. (e.g. --net[=n[:args], ...])	Configure the pod’s networking. Optionally, pass a list of user-configured networks to load and set arguments to pass to each network, respectively.
--no-overlay	false	true or false	Disable the overlay filesystem.
--oom-score-adjust	none	adjust /proc/$pid/oom_score_adj	oom-score-adj isolator override.
--pod-manifest	none	A path	The path to the pod manifest. If it’s non-empty, then only --net, --no-overlay and --interactive will have effect.
--port	none	A port name and number pair	Container port name to expose through host port number. Requires contained network. Syntax: --port=NAME:HOSTPORT The NAME is that given in the ACI. By convention, Docker containers’ EXPOSEd ports are given a name formed from the port number, a hyphen, and the protocol, e.g., 80-tcp, giving something like --port=80-tcp:8080.
--private-users	false	true or false	Run within user namespaces.
--pull-policy	new	never, new, or update	Sets the policy for when to fetch an image. See image fetching behavior
--readonly-rootfs	none	set root filesystem readonly (e.g., --readonly-rootfs=true)	if set, the app’s rootfs will be mounted read-only
--seccomp	none	filter override (e.g., --seccomp mode=retain,errno=EPERM,chmod,chown)	seccomp filter override
--set-env	none	An environment variable (e.g. --set-env=NAME=VALUE)	An environment variable to set for apps.
--set-env-file	none	Path of an environment variables file (e.g. --set-env-file=/path/to/env/file)	Environment variables to set for apps.
--signature	none	A file path	Local signature file to use in validating the preceding image.
--stage1-from-dir	none	Image name (e.g. --stage1-name=coreos.com/rkt/stage1-coreos)	A stage1 image file name to search for inside the default stage1 images directory.
--stage1-hash	none	Image hash (e.g. --stage1-hash=sha512-dedce9f5ea50)	A hash of a stage1 image. The image must exist in the store.
--stage1-name	none	Image name (e.g. --stage1-name=coreos.com/rkt/stage1-coreos)	A name of a stage1 image. Will perform a discovery if the image is not in the store.
--stage1-path	none	Absolute or relative path	A path to a stage1 image.
--stage1-url	none	URL with protocol	A URL to a stage1 image. HTTP/HTTPS/File/Docker URLs are supported.
--supplementary-gids	none	supplementary group IDs (e.g., --supplementary-gids=1024,2048)	supplementary group IDs override for the preceding image
--user	none	uid, username or file path (e.g. --user=core)	User override for the preceding image.
--user-annotation	none	annotation add to the app’s UserAnnotations field	Set the app’s annotations (example: ‘–user-annotation=foo=bar’).
--user-label	none	label add to the apps’ UserLabels field	Set the app’s labels (example: ‘–user-label=foo=bar’).
--uuid-file-save	none	A file path	Write out the pod UUID to a file.
--volume	none	Volume syntax (e.g. --volume NAME,kind=KIND,source=PATH,readOnly=BOOL)	Volumes to make available in the pod. See Mount Volumes into a Pod.
--working-dir	none	working directory override (e.g. --working-dir=/tmp/bar)	Override the working directory in the preceding image.

Per-application options

Flag	Default	Options	Description
—	—	—	—
--stdin	“null”	“null”, “tty”, “stream”	Mode for this application stdin.
--stdout	“log”	“null”, “tty”, “stream”, “log”	Mode for this application stdout.
--stderr	“log”	“null”, “tty”, “stream”, “log”	Mode for this application stderr.

Global options

See the table with global options in general commands documentation.

 rkt version

rkt version

This command prints the rkt version, the appc version rkt is built against, and the Go version and architecture rkt was built with.

Example

$ rkt version
rkt Version: 1.28.1
appc Version: 0.8.10
Go Version: go1.5.3
Go OS/Arch: linux/amd64

 rkt api-service

rkt api-service

Overview

The API service lists and introspects pods and images.
The API service is implemented with gRPC [http://www.grpc.io/].
The API service is designed to run without root privileges, and currently provides a read-only interface.
The API service is optional for running pods, the start/stop/crash of the API service won’t affect any pods or images.

Running the API service

The API service listens for gRPC requests on the address and port specified by the --listen option.
The default is to listen on the loopback interface on port number 15441, equivalent to invoking rkt api-service --listen=localhost:15441.
Specify the address 0.0.0.0 to listen on all interfaces.

Typically, the API service will be run via a unit file similar to the one included in the dist directory [https://github.com/rkt/rkt/blob/master/dist/init/systemd/rkt-api.service].

Using the API service

The interfaces are defined in the protobuf here [https://github.com/rkt/rkt/blob/master/api/v1alpha/api.proto].
Here is a small Go program [https://github.com/rkt/rkt/blob/master/api/v1alpha/client_example.go] that illustrates how to use the API service.

Options

Flag	Default	Options	Description
—	—	—	—
--listen	localhost:15441	An address to listen on	Address to listen for client API requests

Global options

See the table with global options in general commands documentation.

 rkt enter

rkt enter

Given a pod UUID, if you want to enter a running pod to explore its filesystem or see what’s running you can use rkt enter.

rkt enter 76dc6286
Pod contains multiple apps:
 redis
 etcd
Unable to determine app name: specify app using "rkt enter --app= ..."

rkt enter --app=redis 76dc6286
No command specified, assuming "/bin/bash"
root@rkt-76dc6286-f672-45f2-908c-c36dcd663560:/# ls
bin data entrypoint.sh home lib64 mnt proc run selinux sys usr
boot dev etc lib media opt root sbin srv tmp var

Options

Flag	Default	Options	Description
—	—	—	—
--app	``	Name of an app	Name of the app to enter within the specified pod

Global options

See the table with global options in general commands documentation.

 rkt cat-manifest

rkt cat-manifest

For debugging or inspection you may want to extract the PodManifest to stdout.

rkt cat-manifest UUID
{
 "acVersion":"0.8.10",
 "acKind":"PodManifest"
...

Options

Flag	Default	Options	Description
—	—	—	—
--pretty-print	true	true or false	Apply indent to format the output

Global options

See the table with global options in general commands documentation.

 rkt image

rkt image

rkt image cat-manifest

For debugging or inspection you may want to extract an ACI manifest to stdout.

rkt image cat-manifest coreos.com/etcd
{
 "acVersion": "0.8.10",
 "acKind": "ImageManifest",
...

Options

Flag	Default	Options	Description
—	—	—	—
--pretty-print	true	true or false	Apply indent to format the output

rkt image export

There are cases where you might want to export the ACI from the store to copy to another machine, file server, etc.

rkt image export coreos.com/etcd etcd.aci
$ tar xvf etcd.aci

NOTES:

	A matching image must be fetched before doing this operation, rkt will not attempt to download an image first, this subcommand will incur no-network I/O.

	The exported ACI file might be different than the original one because rkt image export always returns uncompressed ACIs.

Options

Flag	Default	Options	Description
—	—	—	—
--overwrite	false	true or false	Overwrite output ACI

rkt image extract/render

For debugging or inspection you may want to extract an ACI to a directory on disk.
There are a few different options depending on your use case but the basic command looks like this:

rkt image extract coreos.com/etcd etcd-extracted
find etcd-extracted
etcd-extracted
etcd-extracted/manifest
etcd-extracted/rootfs
etcd-extracted/rootfs/etcd
etcd-extracted/rootfs/etcdctl
...

NOTE: Like with rkt image export, a matching image must be fetched before doing this operation.

Now there are some flags that can be added to this:

To get just the rootfs use:

rkt image extract --rootfs-only coreos.com/etcd etcd-extracted
find etcd-extracted
etcd-extracted
etcd-extracted/etcd
etcd-extracted/etcdctl
...

If you want the image rendered as it would look ready-to-run inside of the rkt stage2 then use rkt image render.
NOTE: this will not use overlayfs or any other mechanism.
This is to simplify the cleanup: to remove the extracted files you can run a simple rm -Rf.

Options

Flag	Default	Options	Description
—	—	—	—
--overwrite	false	true or false	Overwrite output directory
--rootfs-only	false	true or false	Extract rootfs only

rkt image gc

You can garbage collect the rkt store to clean up unused internal data and remove old images.

By default, images not used in the last 24h will be removed.
This can be configured with the --grace-period flag.

rkt image gc --grace-period 48h
rkt: removed treestore "deps-sha512-219204dd54481154aec8f6eafc0f2064d973c8a2c0537eab827b7414f0a36248"
rkt: removed treestore "deps-sha512-3f2a1ad0e9739d977278f0019b6d7d9024a10a2b1166f6c9fdc98f77a357856d"
rkt: successfully removed aci for image: "sha512-e39d4089a224718c41e6bef4c1ac692a6c1832c8c69cf28123e1f205a9355444" ("coreos.com/rkt/stage1")
rkt: successfully removed aci for image: "sha512-0648aa44a37a8200147d41d1a9eff0757d0ac113a22411f27e4e03cbd1e84d0d" ("coreos.com/etcd")
rkt: 2 image(s) successfully removed

Options

Flag	Default	Options	Description
—	—	—	—
--grace-period	24h0m0s	A time	Duration to wait since an image was last used before removing it

rkt image list

You can get a list of images in the local store with their keys, names and import times.

rkt image list
ID NAME IMPORT TIME LAST USED SIZE LATEST
sha512-91e98d7f1679 coreos.com/etcd:v2.0.9 6 days ago 2 minutes ago 12MiB false
sha512-a03f6bad952b coreos.com/rkt/stage1:0.7.0 55 minutes ago 2 minutes ago 143MiB false

A more detailed output can be had by adding the --full flag:

ID NAME IMPORT TIME LAST USED SIZE LATEST
sha512-96323da393621d846c632e71551b77089ac0b004ceb5c2362be4f5ced2212db9 registry-1.docker.io/library/redis:latest 2015-12-14 12:30:33.652 +0100 CET 2015-12-14 12:33:40.812 +0100 CET 113309184 true

Options

Flag	Default	Options	Description
—	—	—	—
--fields	id,name,importtime,lastused,size,latest	A comma-separated list with one or more of id, name, importtime, lastused, size, latest	Comma-separated list of fields to display
--full	false	true or false	Use long output format
--no-legend	false	true or false	Suppress a legend with the list
--order	asc	asc or desc	Choose the sorting order if at least one sort field is provided (--sort)
--sort	importtime	A comma-separated list with one or more of id, name, importtime, lastused, size, latest	Sort the output according to the provided comma-separated list of fields

rkt image rm

Given multiple image IDs or image names you can remove them from the local store.

rkt image rm sha512-a03f6bad952b coreos.com/etcd
rkt: successfully removed aci for image: "sha512-a03f6bad952bd548c2a57a5d2fbb46679aff697ccdacd6c62e1e1068d848a9d4" ("coreos.com/rkt/stage1")
rkt: successfully removed aci for image: "sha512-91e98d7f167905b69cce91b163963ccd6a8e1c4bd34eeb44415f0462e4647e27" ("coreos.com/etcd")
rkt: 2 image(s) successfully removed

rkt image verify

Given one or more image IDs or image names, verify will verify that their
ondisk checksum matches the value previously calculated on render.

rkt image verify quay.io/coreos/etcd:v3.1.0 sha512-887890e697d9
successfully verified checksum for image: "quay.io/coreos/etcd:v3.1.0" ("sha512-e70ec975ce5327ea52c4a30cc4a951ecea55217a290e866e70888517964ba700")
successfully verified checksum for image: "sha512-887890e697d9" ("sha512-887890e697d9a0229eff22436def3c436cb4b18f72ac274c8c05427b39539307")

Global options

See the table with global options in general commands documentation.

 rkt metadata-service

rkt metadata-service

Overview

The metadata service is designed to help running apps introspect their execution environment and assert their pod identity.
In particular, the metadata service exposes the contents of the pod and image manifests as well as a convenient method of looking up annotations.
Finally, the metadata service provides a pod with cryptographically verifiable identity.

Running the metadata service

The metadata service is implemented by the rkt metadata-service command.
When started, it will listen for registration events over Unix socket on /run/rkt/metadata-svc.sock.
For systemd-based distributions, it also supports systemd socket activation [http://0pointer.de/blog/projects/socket-activation.html].

If using socket activation, ensure the socket is named /run/rkt/metadata-svc.sock, as rkt run uses this name during registration.
Please note that when started under socket activation, the metadata service will not remove the socket on exit.
Use the RemoveOnStop directive in the relevant .socket file to clean up.

Example systemd unit files for running the metadata service are available in dist [https://github.com/rkt/rkt/tree/master/dist/init/systemd].

In addition to listening on a Unix socket, the metadata service will also listen on a TCP port 2375.
When contacting the metadata service, the apps utilize this port.
The IP and port of the metadata service are passed by rkt to pods via the AC_METADATA_URL environment variable.

Using the metadata service

See App Container specification [https://github.com/appc/spec/blob/master/spec/ace.md#app-container-metadata-service] for more information about the metadata service including a list of supported endpoints and their usage.

Options

Flag	Default	Options	Description
—	—	—	—
--listen-port	18112	A port number	Listen port

Global options

See the table with global options in general commands documentation.

 rkt config

rkt config

The config subcommand prints the configuration of each rkt stage in JSON on the standard output.

Structure

The general structure is a simple hierarchy consisting of the following top-level element:

{
 "stage0": [...]
}

The entry “stage0” refers to stage-specific configuration; “stage1” is currently left out intentionally because its configuration subsystem is subject to change. The generated output are valid configuration entries as specified in the configuration documentation.

The “stage0” entry contains subentries of rktKind “auth”, “dockerAuth”, “paths”, and “stage1”. Note that the config subcommand will output separate entries per “auth” domain and separate entries per “dockerAuth” registry. While it is possible to specify an array of strings in the input configuration rkt internally merges configuration state from different directories potentially creating multiple entries.

Consider the following system configuration:

$ cat /etc/rkt/auth.d/basic.json
{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": [
 "foo.com",
 "bar.com",
 "baz.com"
],
 "type": "basic",
 "credentials": { "user": "sysUser", "password": "sysPassword" }
}

And the following user configuration:

$ ~/.config/rkt/auth.d/basic.json
{
 "rktKind": "auth",
 "rktVersion": "v1",
 "domains": [
 "foo.com"
],
 "type": "basic",
 "credentials": { "user": "user", "password": "password" }
}

The config subcommand would generate the following separate merged entries:

{
 "stage0": [
 {
 "rktVersion": "v1",
 "rktKind": "auth",
 "domains": ["bar.com"],
 "type": "basic",
 "credentials": { "user": "sysUser", "password": "sysPassword" }
 },
 {
 "rktVersion": "v1",
 "rktKind": "auth",
 "domains": ["baz.com"],
 "type": "basic",
 "credentials": { "user": "sysUser", "password": "sysPassword" }
 },
 {
 "rktVersion": "v1",
 "rktKind": "auth",
 "domains": ["foo.com"],
 "type": "basic",
 "credentials": { "user": "user", "password": "password" }
 }
]
}

In the example given above the user configuration entry for the domain “foo.com” overrides the system configuration entry leaving the entries “bar.com” and “baz.com” unchanged. The config subcommand output creates three separate entries for “foo.com”, “bar.com”, and “baz.com”.

Note: While the “bar.com”, and “baz.com” entries in the example given above could be merged into one entry they are still being printed separate. This behavior is subject to change, future implementations may provide a merged output.

Example

$ rkt config
{
 "stage0": [
 {
 "rktVersion": "v1",
 "rktKind": "auth",
 "domains": [
 "bar.com"
],
 "type": "oauth",
 "credentials": {
 "token": "someToken"
 }
 },
 {
 "rktVersion": "v1",
 "rktKind": "auth",
 "domains": [
 "foo.com"
],
 "type": "basic",
 "credentials": {
 "user": "user",
 "password": "userPassword"
 }
 },
 {
 "rktVersion": "v1",
 "rktKind": "paths",
 "data": "/var/lib/rkt",
 "stage1-images": "/usr/lib/rkt"
 },
 {
 "rktVersion": "v1",
 "rktKind": "stage1",
 "name": "coreos.com/rkt/stage1-coreos",
 "version": "0.15.0+git",
 "location": "/usr/libexec/rkt/stage1-coreos.aci"
 }
]
}

 rkt stop

rkt stop

Given a list of pod UUIDs, rkt stop will shut them down, for the shipped stage1 images, this means:

	default systemd-nspawn stage1: the apps in the pod receive a TERM signal and, after a timeout, a KILL signal.

	kvm stage1: the virtual machine is shut down with systemctl halt.

	rkt fly stage1: the app receives a TERM signal.

The --force flag will stop a pod forcibly, that is:

	default systemd-nspawn stage1: the container is killed.

	kvm stage1: the qemu or lkvm process receives a KILL signal.

	rkt fly stage1: the app receives a KILL signal.

rkt stop 387fc8eb cbbf5c01
"387fc8eb-eabd-4e77-b080-d8c0001eb50c"
"cbbf5c01-dd52-4ccc-a1e0-cfd8f1e88418"
rkt stop --force 93e516b0
"93e516b0-e84b-40cf-a45b-531b14dfcce2"

The --uuid-file flag may be used to pass a text file with UUID to stop command.
This can be paired with --uuid-file-save flag to stop pods by name:

rkt run --uuid-file-save=/run/rkt-uuids/mypod ...
rkt stop --uuid-file=/run/rkt-uuids/mypod

Other ways to stop a rkt pod

If you started rkt as a systemd service, you can stop the pod with systemctl stop.

If you started rkt interactively:

	For a stage1 with systemd-nspawn, you can stop the pod by pressing ^] three times within 5 seconds.
If you’re using systemd on the host, you can also use machinectl with the poweroff or terminate subcommand.

	For a stage1 with kvm, you can stop the pod by pressing Ctrl+A and then x.

 rkt fly

rkt fly

This subcommand does not exist yet.

It will make use of the fly stage1 which is currently in an early phase of development.
More information can be found in the document about running rkt with the fly stage1.

 rkt run-prepared

rkt run-prepared

Once a pod is prepared with rkt prepare, it can be run by executing rkt run-prepared UUID.

Example

rkt list
UUID APP ACI STATE NETWORKS
c9fad0e6 etcd coreos.com/etcd prepared
rkt run-prepared c9fad0e6
2015/10/01 16:44:08 Setting up stage1
2015/10/01 16:44:08 Wrote filesystem to /var/lib/rkt/pods/run/c9fad0e6-8236-4fc2-ad17-55d0a4c7d742
2015/10/01 16:44:08 Pivoting to filesystem /var/lib/rkt/pods/run/c9fad0e6-8236-4fc2-ad17-55d0a4c7d742
2015/10/01 16:44:08 Execing /init
[25701.705171] etcd[4]: 2015/10/01 14:44:09 etcd: no data-dir provided, using default data-dir ./default.etcd
[25701.705596] etcd[4]: 2015/10/01 14:44:09 etcd: listening for peers on http://localhost:2380
[25701.705875] etcd[4]: 2015/10/01 14:44:09 etcd: listening for peers on http://localhost:7001
[25701.706473] etcd[4]: 2015/10/01 14:44:09 etcd: listening for client requests on http://localhost:2379
[25701.706679] etcd[4]: 2015/10/01 14:44:09 etcd: listening for client requests on http://localhost:4001
[25701.706842] etcd[4]: 2015/10/01 14:44:09 etcdserver: datadir is valid for the 2.0.1 format
[25701.706999] etcd[4]: 2015/10/01 14:44:09 etcdserver: name = default
[25701.707147] etcd[4]: 2015/10/01 14:44:09 etcdserver: data dir = default.etcd
[25701.707294] etcd[4]: 2015/10/01 14:44:09 etcdserver: member dir = default.etcd/member
[25701.707464] etcd[4]: 2015/10/01 14:44:09 etcdserver: heartbeat = 100ms
[25701.707624] etcd[4]: 2015/10/01 14:44:09 etcdserver: election = 1000ms
[25701.707771] etcd[4]: 2015/10/01 14:44:09 etcdserver: snapshot count = 10000
[25701.707917] etcd[4]: 2015/10/01 14:44:09 etcdserver: advertise client URLs = http://localhost:2379,http://localhost:4001
[25701.708062] etcd[4]: 2015/10/01 14:44:09 etcdserver: initial advertise peer URLs = http://localhost:2380,http://localhost:7001
[25701.708216] etcd[4]: 2015/10/01 14:44:09 etcdserver: initial cluster = default=http://localhost:2380,default=http://localhost:7001
[25701.712024] etcd[4]: 2015/10/01 14:44:09 etcdserver: start member ce2a822cea30bfca in cluster 7e27652122e8b2ae
[25701.712623] etcd[4]: 2015/10/01 14:44:09 raft: ce2a822cea30bfca became follower at term 0
[25701.713183] etcd[4]: 2015/10/01 14:44:09 raft: newRaft ce2a822cea30bfca [peers: [], term: 0, commit: 0, applied: 0, lastindex: 0, lastterm: 0]
[25701.713378] etcd[4]: 2015/10/01 14:44:09 raft: ce2a822cea30bfca became follower at term 1
[25701.716177] etcd[4]: 2015/10/01 14:44:09 etcdserver: added local member ce2a822cea30bfca [http://localhost:2380 http://localhost:7001] to cluster 7e27652122e8b2ae
[25703.012367] etcd[4]: 2015/10/01 14:44:10 raft: ce2a822cea30bfca is starting a new election at term 1
[25703.012749] etcd[4]: 2015/10/01 14:44:10 raft: ce2a822cea30bfca became candidate at term 2
[25703.012976] etcd[4]: 2015/10/01 14:44:10 raft: ce2a822cea30bfca received vote from ce2a822cea30bfca at term 2
[25703.013193] etcd[4]: 2015/10/01 14:44:10 raft: ce2a822cea30bfca became leader at term 2
[25703.013405] etcd[4]: 2015/10/01 14:44:10 raft.node: ce2a822cea30bfca elected leader ce2a822cea30bfca at term 2
[25703.017089] etcd[4]: 2015/10/01 14:44:10 etcdserver: published {Name:default ClientURLs:[http://localhost:2379 http://localhost:4001]} to cluster 7e27652122e8b2ae

Options

Flag	Default	Options	Description					
—	—	—	—					
--dns		IP Address	Name server to write in `/etc/resolv.conf`. It can be specified several times		`--dns-opt`		Option as described in the options section in resolv.conf(5)	DNS option to write in /etc/resolv.conf. It can be specified several times
--dns-search	``	Domain name	DNS search domain to write in /etc/resolv.conf. It can be specified several times					
--hostname	“rkt-$PODUUID”	A host name	Set pod’s host name.					
--interactive	false	true or false	Run pod interactively. If true, only one image may be supplied					
--mds-register	false	true or false	Register pod with metadata service. It needs network connectivity to the host (--net=(default	default-restricted	host)			
--net	default	A comma-separated list of networks. Syntax: --net[=n[:args], ...]	Configure the pod’s networking. Optionally, pass a list of user-configured networks to load and set arguments to pass to each network, respectively					

Global options

See the table with global options in general commands documentation.

 rkt rm

rkt rm

Cleans up all resources (files, network objects) associated with a pod just like rkt gc.
This command can be used to immediately free resources without waiting for garbage collection to run.

rkt rm c138310f

Instead of passing UUID on command line, rm command can read the UUID from a text file.
This can be paired with --uuid-file-save to remove pods by name:

rkt run --uuid-file-save=/run/rkt-uuids/mypod ...
rkt rm --uuid-file=/run/rkt-uuids/mypod

Global options

See the table with global options in general commands documentation.

 rkt status

rkt status

Given a pod UUID, you can get the exit status of its apps.
Note that the apps are prefixed by app-.

$ rkt status 66ceb509
state=exited
created=2016-01-26 14:23:34.631 +0100 CET
started=2016-01-26 14:23:34.744 +0100 CET
pid=16964
exited=true
app-redis=0
app-etcd=0

Note that pid may not be available shortly after rkt run, or rkt run-prepared, even when state=running.

The --wait flags below can be used to wait for a Pod to be running with its pid captured.

If the pod is still running, you can wait for it to finish and then get the status with rkt status --wait UUID.
To wait for the pod to become ready, execute rkt status --wait-ready.
Both options also accept a duration. To wait up to 10 seconds until the pod is finished, execute rkt status --wait=10s UUID.

Options

Flag	Default	Options	Description
—	—	—	—
--wait	false	true or false or duration	Toggle waiting for the pod to finish.
--wait-ready	false	true or false or duration	Toggle waiting until the pod is ready.

Global options

See the table with global options in general commands documentation.

 rkt attach

rkt attach

Applications can be started in interactive mode and later attached via rkt attach.

In order for an application to be attachable:

	it must be started in interactive mode

	it must be running as part of a running pod

	it must support the corresponding attach mode

To start an application in interactive mode, either tty or stream must be passed as value for the --stdin, --stdout and --stderr options.

An application can be run with a dedicated terminal and later attached to:

rkt run quay.io/coreos/alpine-sh --stdin tty --stdout tty --stderr tty

rkt attach --mode tty ${UUID}

/ # hostname
rkt-911afe8e-992f-4089-8666-4a4c957a1964

/ # tty
/rkt/iottymux/alpine-sh/pts
^C

In a similar way, an application can be run without a tty but with separated attachable streams:

rkt run quay.io/coreos/alpine-sh --stdin stream --stdout stream --stderr stream

rkt attach --mode stdin,stdout,stderr ${UUID}
hostname
rkt-846c35db-6728-471a-ad50-66d3a8d7ff9c

tty
not a tty
^C

If a pod contains multiple applications, the one to be used as attach target can be specified via --app.

The following options are allowed as --mode values:

	list: list available endpoints, and return early without attaching

	auto: attach to all available endpoints

	tty: bi-directionally attach to the application terminal

	tty-in or tty-out: uni-directionally attach to the application terminal

	stdin,stdout,stderr: attach to specific application streams. Omitted streams will no be attached

A more complex example, showing the usage of advanced options and piping:

rkt run quay.io/coreos/alpine-sh --stdin stream --stdout stream --stderr stream

rkt attach --app alpine-sh --mode list 846c35db
stdin
stdout
stderr

echo 'hostname; fakecmd' | ./rkt attach --app alpine-sh --mode auto ${UUID}
rkt-846c35db-6728-471a-ad50-66d3a8d7ff9c
/bin/sh: fakecmd: not found
^C

echo 'hostname; fakecmd' | ./rkt attach --app alpine-sh --mode stdin,stdout ${UUID}
rkt-846c35db-6728-471a-ad50-66d3a8d7ff9c
^C

echo 'hostname; fakecmd' | ./rkt attach --app alpine-sh --mode stdin,stderr ${UUID}
/bin/sh: fakecmd: not found
^C

Options

Flag	Default	Options	Description
—	—	—	—
--app	``	Name of an application	Name of the app to attach to within the specified pod
--mode	auto	“list”, “auto” or tty/stream mode	Attaching mode

Global options

See the table with global options in general commands documentation.

 rkt gc

rkt gc

rkt has a built-in garbage collection command that is designed to be run periodically from a timer or cron job.
Stopped pods are moved to the garbage and cleaned up during a subsequent garbage collection pass.
Each gc pass removes any pods remaining in the garbage past the grace period.
Read more about the pod lifecycle.

rkt gc --grace-period=30m0s
Moving pod "21b1cb32-c156-4d26-82ae-eda1ab60f595" to garbage
Moving pod "5dd42e9c-7413-49a9-9113-c2a8327d08ab" to garbage
Moving pod "f07a4070-79a9-4db0-ae65-a090c9c393a3" to garbage

On the next pass, the pods are removed:

rkt gc --grace-period=30m0s
Garbage collecting pod "21b1cb32-c156-4d26-82ae-eda1ab60f595"
Garbage collecting pod "5dd42e9c-7413-49a9-9113-c2a8327d08ab"
Garbage collecting pod "f07a4070-79a9-4db0-ae65-a090c9c393a3"

Options

Flag	Default	Options	Description
—	—	—	—
--expire-prepared	24h0m0s	A time	Duration to wait before expiring prepared pods
--grace-period	30m0s	A time	Duration to wait before discarding inactive pods from garbage
--mark-only	false	true or false	If set to true, only the “mark” phase of the garbage collection process will be formed (i.e., exited/aborted pods will be moved to the garbage, but nothing will be deleted)

Global options

See the table with global options in general commands documentation.

 rkt list

rkt list

You can list all rkt pods.

$ rkt list
UUID APP IMAGE NAME STATE CREATED STARTED NETWORKS
5bc080ca redis redis running 2 minutes ago 41 seconds ago default:ip4=172.16.28.7
 etcd coreos.com/etcd:v2.0.9
3089337c nginx nginx exited 9 minutes ago 2 minutes ago

You can view the full UUID as well as the image’s ID by using the --full flag.

$ rkt list --full
UUID APP IMAGE NAME IMAGE ID STATE CREATED STARTED NETWORKS
5bc080cav-9e03-480d-b705-5928af396cc5 redis redis sha512-91e98d7f1679 running 2016-01-25 17:42:32.563 +0100 CET 2016-01-25 17:44:05.294 +0100 CET default:ip4=172.16.28.7
 etcd coreos.com/etcd:v2.0.9 sha512-a03f6bad952b
3089337c4-8021-119b-5ea0-879a7c694de4 nginx nginx sha512-32ad6892f21a exited 2016-01-25 17:36:40.203 +0100 CET 2016-01-25 17:42:15.1 +0100 CET

Options

Flag	Default	Options	Description
—	—	—	—
--full	false	true or false	Use long output format
--no-legend	false	true or false	Suppress a legend with the list

Global options

See the table with global options in general commands documentation.

 rkt trust

rkt trust

Before executing a remotely fetched ACI, rkt will verify it based on attached signatures generated by the ACI creator.

Before this can happen, rkt needs to know which creators you trust, and therefore are trusted to run images on your machine.
The identity of each ACI creator is established with a public key, which is placed in rkt’s key store on disk.

When adding a trusted key, a prefix can scope the level of established trust to a subset of images.
A few examples:

rkt trust --prefix=storage.coreos.com

rkt trust --prefix=coreos.com/etcd

To trust a key for an entire root domain, you must use the --root flag, with a path to a key file (no discovery).

rkt trust --root ~/aci-pubkeys.gpg

Trust a Key Using Meta Discovery

The easiest way to trust a key is through meta discovery.
rkt will find and download a public key that the creator has published on their website.
The ACI discovery mechanism is detailed in the App Container specification [https://github.com/appc/spec/blob/master/spec/discovery.md].
The TL;DR is rkt will find a meta tag that looks like:

<meta name="ac-discovery-pubkeys" content="coreos.com/etcd https://coreos.com/dist/pubkeys/aci-pubkeys.gpg">

And use it to download the public key and present it to you for approval:

rkt trust --prefix=coreos.com/etcd
Prefix: "coreos.com/etcd"
Key: "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg"
GPG key fingerprint is: 8B86 DE38 890D DB72 9186 7B02 5210 BD88 8818 2190
 CoreOS ACI Builder <release@coreos.com>
Are you sure you want to trust this key (yes/no)? yes
Trusting "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg" for prefix "coreos.com/etcd".
Added key for prefix "coreos.com/etcd" at "/etc/rkt/trustedkeys/prefix.d/coreos.com/etcd/8b86de38890ddb7291867b025210bd8888182190"

If rkt can’t find a key using meta discovery, an error will be printed:

rkt trust --prefix=coreos.com
Error determining key location: --prefix meta discovery error: found no ACI meta tags

Trust a Key From Specific Location

If you know where a public key is located, you can request it directly from disk or via HTTPS:

rkt trust --prefix=coreos.com/etcd https://coreos.com/dist/pubkeys/aci-pubkeys.gpg
Prefix: "coreos.com/etcd"
Key: "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg"
GPG key fingerprint is: 8B86 DE38 890D DB72 9186 7B02 5210 BD88 8818 2190
 CoreOS ACI Builder <release@coreos.com>
Are you sure you want to trust this key (yes/no)? yes
Trusting "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg" for prefix "coreos.com/etcd".
Added key for prefix "coreos.com/etcd" at "/etc/rkt/trustedkeys/prefix.d/coreos.com/etcd/8b86de38890ddb7291867b025210bd8888182190"

Pre-Populating Trusted Keys on Disk

Trusted public keys can be pre-populated by placing them in the appropriate location on disk for the desired prefix.

$ find /etc/rkt/trustedkeys/
/etc/rkt/trustedkeys/
/etc/rkt/trustedkeys/prefix.d
/etc/rkt/trustedkeys/prefix.d/coreos.com
/etc/rkt/trustedkeys/prefix.d/coreos.com/etcd
/etc/rkt/trustedkeys/prefix.d/coreos.com/etcd/8b86de38890ddb7291867b025210bd8888182190
/etc/rkt/trustedkeys/root.d
/etc/rkt/trustedkeys/root.d/d8685c1eff3b2276e5da37fd65eea12767432ac4

Options

Flag	Default	Options	Description
—	—	—	—
--insecure-allow-http	false	true or false	Allow HTTP use for key discovery and/or retrieval
--prefix	``	A URL prefix	Prefix to limit trust to
--root	false	true or false	Add root key from filesystem without a prefix
--skip-fingerprint-review	false	true or false	Accept key without fingerprint confirmation

Global options

See the table with global options in general commands documentation.

 rkt prepare

rkt prepare

rkt can prepare images to run in a pod.
This means it will fetch (if necessary) the images, extract them in its internal tree store, and allocate a pod UUID.
If overlay fs is not supported or disabled, it will also copy the tree in the pod rootfs.

Support for overlay fs will be auto-detected if --no-overlay is set to false. If an unsupported filesystem is detected, rkt will print a warning message and continue preparing the pod by falling back in non-overlay mode as described above:

rkt prepare --insecure-options=image docker://busybox --exec=/bin/sh
image: using image from local store for image name coreos.com/rkt/stage1-coreos:1.28.1
image: remote fetching from URL "docker://busybox"
Downloading sha256:8ddc19f1652 [===============================] 668 KB / 668 KB
prepare: disabling overlay support: "unsupported filesystem: missing d_type support"

The following conditions can lead to non-overlay mode:

The data directory (usually /var/lib/rkt) is on ...

	an AUFS filesystem

	a ZFS filesystem

	a XFS filesystem having ftype=0

	a file system where the d_type field is set to DT_UNKNOWN, see getdents(2)

In this way, the pod is ready to be launched immediately by the run-prepared command.

Running rkt prepare + rkt run-prepared is semantically equivalent to running rkt run.
Therefore, the supported arguments are mostly the same as in run except runtime arguments like --interactive or --mds-register.

Example

rkt prepare coreos.com/etcd:v2.0.10
rkt prepare coreos.com/etcd:v2.0.10
rkt: using image from local store for image name coreos.com/rkt/stage1-coreos:1.28.1
rkt: searching for app image coreos.com/etcd:v2.0.10
rkt: remote fetching from url https://github.com/coreos/etcd/releases/download/v2.0.10/etcd-v2.0.10-linux-amd64.aci
prefix: "coreos.com/etcd"
key: "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg"
gpg key fingerprint is: 8B86 DE38 890D DB72 9186 7B02 5210 BD88 8818 2190
 CoreOS ACI Builder <release@coreos.com>
Key "https://coreos.com/dist/pubkeys/aci-pubkeys.gpg" already in the keystore
Downloading signature from https://github.com/coreos/etcd/releases/download/v2.0.10/etcd-v2.0.10-linux-amd64.aci.asc
Downloading signature: [=======================================] 819 B/819 B
Downloading ACI: [===] 3.79 MB/3.79 MB
rkt: signature verified:
 CoreOS ACI Builder <release@coreos.com>
c9fad0e6-8236-4fc2-ad17-55d0a4c7d742

Options

Flag	Default	Options	Description					
—	—	—	—					
--user-annotation	none	annotation add to the app’s UserAnnotations field	Set the app’s annotations (example: ‘–annotation=foo=bar’).					
--caps-remove	none	capability to remove (example: ‘–caps-remove=CAP_SYS_CHROOT,CAP_MKNOD’)	Capabilities to remove from the process’s capabilities bounding set, all others from the default set will be included					
--caps-retain	none	capability to retain (example: ‘–caps-remove=CAP_SYS_ADMIN,CAP_NET_ADMIN’)	Capabilities to retain in the process’s capabilities bounding set, all others will be removed					
--environment	none	environment variables add to the app’s environment variables	Set the app’s environment variables (example: ‘–environment=foo=bar’).					
--exec	none	Path to executable	Override the exec command for the preceding image.					
--group	root	gid, groupname or file path	Group override for the preceding image (example: ‘–group=group’)					
--inherit-env	false	true or false	Inherit all environment variables not set by apps.					
--user-label	none	label add to the apps’ UserLabels field	Set the app’s labels (example: ‘–label=foo=bar’).					
--mount	none	Mount syntax (ex. --mount volume=NAME,target=PATH)	Mount point binding a volume to a path within an app. See Mounting Volumes without Mount Points.					
--name	none	Name of the app	Set the name of the app (example: ‘–name=foo’). If not set, then the app name default to the image’s name					
--no-overlay	false	true or false	Disable the overlay filesystem.					
--pull-policy	new	never, new, or update	Sets the policy for when to fetch an image. See image fetching behavior					
--pod-manifest	none	A path	The path to the pod manifest. If it’s non-empty, then only --net, --no-overlay and --interactive will have effect.					
--port	none	A port name and number pair	Container port name to expose through host port number. Requires contained network. Syntax: --port=NAME:HOSTPORT The NAME is that given in the ACI. By convention, Docker containers’ EXPOSEd ports are given a name formed from the port number, a hyphen, and the protocol, e.g., 80-tcp, giving something like --port=80-tcp:8080					
--private-users	false	true or false	Run within user namespaces					
--quiet	false	true or false	Suppress superfluous output on stdout, print only the UUID on success					
--set-env		An environment variable. Syntax `NAME=VALUE`	An environment variable to set for apps		`--set-env-file`		Path of an environment variables file	Environment variables to set for apps
--signature		A file path	Local signature file to use in validating the preceding image		`--stage1-url`		A URL to a stage1 image. HTTP/HTTPS/File/Docker URLs are supported	Image to use as stage1
--stage1-path		A path to a stage1 image. Absolute and relative paths are supported	Image to use as stage1		`--stage1-name`		A name of a stage1 image. Will perform a discovery if the image is not in the store	Image to use as stage1
--stage1-hash		A hash of a stage1 image. The image must exist in the store	Image to use as stage1		`--stage1-from-dir`		A stage1 image file inside the default stage1 images directory	Image to use as stage1
--user	none	uid, username or file path	user override for the preceding image (example: ‘–user=user’)					
--volume	``	Volume syntax (NAME,kind=KIND,source=PATH,readOnly=BOOL,recursive=BOOL). See Mount Volumes into a Pod	Volumes to make available in the pod					

Global options

See the table with global options in general commands documentation.

 rkt fetch

rkt fetch

rkt uses HTTPS to locate and download remote ACIs and their attached signatures.
If the ACI exists locally, it won’t be re-downloaded.

Fetch with Meta Discovery

The easiest way to fetch an ACI is through meta discovery.
rkt will find and download the ACI and signature from a location that the creator has published on their website.
The ACI discovery mechanism is detailed in the App Container specification [https://github.com/appc/spec/blob/master/spec/discovery.md].

If you have previously trusted the image creator, it will be downloaded and verified:

rkt fetch coreos.com/etcd:v2.0.0
rkt: searching for app image coreos.com/etcd:v2.0.0
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
Downloading aci: [=======================================] 3.25 MB/3.7 MB
Downloading signature from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.sig
rkt: signature verified:
 CoreOS ACI Builder <release@coreos.com>
sha512-fa1cb92dc276b0f9bedf87981e61ecde

If you haven’t trusted the creator, it will be downloaded but not verified:

rkt fetch coreos.com/etcd:v2.0.0
rkt: searching for app image coreos.com/etcd:v2.0.0
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
Downloading aci: [=======================================] 3.25 MB/3.7 MB
Downloading signature from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.sig
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
sha512-fa1cb92dc276b0f9bedf87981e61ecde

Fetch from Specific Location

If you already know where an image is stored, you can fetch it directly:

rkt fetch https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
Downloading aci: [=======================================] 3.25 MB/3.7 MB
Downloading signature from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.sig
rkt: fetching image from https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
sha512-fa1cb92dc276b0f9bedf87981e61ecde

Fetch from a Docker registry

If you want to run an existing Docker image, you can fetch from a Docker registry.
rkt will download and convert the image to ACI.

rkt --insecure-options=image fetch docker://busybox
rkt: fetching image from docker://busybox
rkt: warning: image signature verification has been disabled
Downloading layer: 4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125
Downloading layer: ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2
Downloading layer: df7546f9f060a2268024c8a230d8639878585defcc1bc6f79d2728a13957871b
Downloading layer: 511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158
sha512-c4010045aec65aefa74770ef2bb648d9

Docker images do not support signature verification.

Image fetching behavior

When fetching, rkt will try to avoid unnecessary network transfers.
For example, if an image is already in the local store, rkt will use HTTP’s ETag and Cache-Control to avoid downloading it again unless the image was updated on the remote server.

This behavior can be changed by using the --pull-policy flag.
Usage of this flag is detailed in the image fetching behavior documentation.

Authentication

If you want to download an image from a private repository, then you will often need to pass credentials to be able to access it.
rkt currently supports authentication for fetching images via https:// or docker:// protocols.
To specify credentials you will have to write some configuration files.
You can find the format of the configuration file and examples in the configuration documentation.
Note that the configuration kind for images downloaded via https:// and images downloaded via docker:// is different.

Options

Flag	Default	Options	Description
—	—	—	—
--full	false	true or false	Print the full image hash after fetching
--signature	``	A file path	Local signature file to use in validating the preceding image
--pull-policy	new	never, new, or update	Sets the policy for when to fetch an image. See image fetching behavior

Global options

See the table with global options in general commands documentation.

 rkt export

rkt export

Exports an exited, single-app pod to an App Container Image (.aci)

$ rkt export UUID .aci

Options

Flag	Default	Options	Description
—	—	—	—
--overwrite	false	true or false	Overwrite the output ACI if it exists

Global options

See the table with global options in general commands documentation.

 OCI Image Format roadmap

OCI Image Format roadmap

Background

rkt currently implements the appc specification [https://github.com/rkt/rkt/blob/v1.28.1/Documentation/app-container.md] and therefore relies on the ACI [https://github.com/appc/spec/blob/v0.8.10/spec/aci.md#app-container-image] (Application Container Image) image format internally.

OCI [https://www.opencontainers.org/] on the other hand defines a new image format [https://github.com/opencontainers/image-spec] following a separate specification.
This new specification differs considerably from rkt’s internal ACI-based image format handling.

The internal rkt image handling is currently divided in three subsystems:

	fetching: This subsystem is responsible for downloading images of various types.
Non-ACI image types (Docker and OCI) are converted to ACI images by delegating to docker2aci [https://github.com/appc/docker2aci]. The logic resides in the github.com/rkt/rkt/rkt/image package.

	image store: The image store is responsible for persisting and managing downloaded images.
It consists of two parts, a directory tree storing the actual image file blobs (usually residing under /var/lib/rkt/cas/blob) and a separate embedded SQL database storing image metadata usually residing in /var/lib/rkt/cas/db/ql.db. The implementation resides in the github.com/rkt/rkt/store/imagestore package.

	tree store: Since dependencies between ACI images form a directed acyclic graph according to the appc spec [https://github.com/appc/spec/blob/v0.8.10/spec/ace.md#filesystem-setup] they are pre-rendered in a directory called the tree store cache.
If the overlay filesystem [https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt] is enabled, the pre-rendered image is used as the lowerdir for the pod’s rendered rootfs. The implementation resides in the github.com/rkt/rkt/store/treestore package.

The actual internal lifecycle of an image is documented in the architecture documentation [https://github.com/rkt/rkt/blob/v1.28.1/Documentation/devel/architecture.md#image-lifecycle].

The following table gives an overview of the relevant differences between OCI and appc regarding image handling aspects:

Aspect | OCI | ACI
——–|—–|——————
Dependencies | Layers array in the image manifest [https://github.com/opencontainers/image-spec/blob/v1.0.0-rc2/manifest.md#image-manifest] | Dependency graph [https://github.com/appc/spec/blob/v0.8.10/spec/ace.md#filesystem-setup]
Hash algorithms | Potentially multiple algorithms [https://github.com/opencontainers/image-spec/blob/v1.0.0-rc2/descriptor.md#algorithms], but SHA-256 preferred | SHA-512 [https://github.com/appc/spec/blob/v0.8.10/spec/types.md#image-id-type]

Current ongoing work to support OCI in rkt is tracked in the following Github project: https://github.com/rkt/rkt/projects/4.

Goals, non-Goals

With the deprecation of the appc Spec (https://github.com/appc/spec#-disclaimer-) the current internal rkt architecture is not favorable any more.
Currently rkt does support ACI, Docker, and OCI images, but the conversion step from OCI to ACI using docker2aci seems unnecessary.
It introduces CPU and I/O bound overhead and is bound by semantical differences between the formats. For these reasons native support of OCI images inside rkt is envisioned.

The goal therefore is to support OCI images natively next to ACI.

This document outlines the following necessary steps and references existing work to transition to native OCI image support in rkt:

	Distribution points

	Reference based image handling

	Transport handlers

	Tree store support for OCI

A non-goal is the implementation of the OCI runtime specification [https://github.com/opencontainers/runtime-spec]. There is ongoing work in https://github.com/rkt/rkt/issues/3408 covering this topic.

Overview

Distribution points

rkt historically used the image name and heuristics around it to determine the actual image format type (appc, Docker, OCI).
The concept of “distribution points” introduced a URI syntax that uniquely points to the different image formats including the necessary metadata (file location, origin URL, version, etc.).

The URI scheme “cimd” (Container Image Distribution) was chosen to uniquely identify different image formats. The following CIMDs are currently supported:

Name | Example
—–|——–
appc | cimd:appc:v=0:coreos.com/etcd?version=v3.0.3&os=linux&arch=amd64
ACIArchive | cimd:aci-archive:v=0:file%3A%2F%2Fabsolute%2Fpath%2Fto%2Ffile
Docker | cimd:docker:v=0:busybox

The design document can be found in Documentation/devel/distribution-point.md [https://github.com/rkt/rkt/blob/v1.28.1/Documentation/devel/distribution-point.md].

Status

	The design document (https://github.com/rkt/rkt/pull/2953) is merged.

	The implementation (https://github.com/rkt/rkt/pull/3369) is merged.

TODOs

	Introduce a dedicated remote cimd:oci and potentially also a local cimd:oci-layout (see github.com/opencontainers/image-spec/image-layout.md [https://github.com/opencontainers/image-spec/blob/v1.0.0-rc2/image-layout.md]) CIMD scheme.

Reference based image handling

The current image store implementation does not support different image formats. The blob image store only supports SHA-512.
The ql backed SQL image store has a simple SQL scheme referencing only ACI images.

In order to prepare native support for OCI the following changes need to be implemented:

	Store the CIMD URI as a primary key in the current image store.

	Support for multiple hash algorithms: Currently only SHA-512 is supported. OCI in addition needs SHA-256 and potentially other hash algorithms.

	The database schema needs to be reworked to reflect multi-image support.

Status

	The design and initial implementation is proposed in https://github.com/rkt/rkt/pull/3071.

	The actual design document of the above PR can be found in Documentation/proposals/reference_based_image_access_and_cas_store.md [https://github.com/rkt/rkt/blob/23313af1c3dac2fb24fe41f9a7c5eaca573e45dd/Documentation/proposals/reference_based_image_access_and_cas_store.md].

Note that the above design document also suggests the introduction of a new key/value Bolt [https://github.com/boltdb/bolt] based store. The current consensus is that the replacement of ql as the backing store can be done independently and therefore should be a non-goal for the OCI roadmap.

TODOs

	Finalize the initial design proposal and implementation.

Transport handlers

Currently rkt directly fetches remote ACI based images or uses docker2aci to delegate non-ACI fetching.
The current implementation makes it hard to integrate separate fetching subsystems due to the lack of any abstraction.

Status

The current proposal is to abstract fetching logic behind “transport handlers” allowing for independent (potentially swappable) fetching implementations for the various image formats.

	A first initial design is proposed in https://github.com/rkt/rkt/pull/2964.

	The actual design document of the above PR can be found in Documentation/proposal/fetchers_refactor.md [https://github.com/sgotti/rkt/blob/239fdff081f9fd47dd08834a5660a1375ea4771d/Documentation/proposal/fetchers_refactor.md].

	A first initial implementation is proposed in https://github.com/rkt/rkt/pull/3232.

Note that the initial design and implementation are in very early stage and should only be considered inspirational.

TODOs

	Fetching images remotely and locally from disk for all formats must be supported.

	The current initial design proposal needs to be finalized.

	The current fetcher logic needs to be abstracted allowing to introduce alternative libraries like https://github.com/containers/image to delegate fetching logic for OCI or Docker images.

Tree store support for OCI

The current tree store implementation is used for rendering ACI images only. A design document and initial implementation has to be created to prototype deflating OCI images and their dependencies.

Status

Not started yet

Risks

Backwards compatibility: Currently the biggest concern identified is backwards compatibility/rollback capabilities. The proposed changes do not only imply simple schema changes in the ql backed database, but also intrusive schema and directory layout changes.

 Imperative app-level API for pod manipulation

Imperative app-level API for pod manipulation

To provide an API for imperative application operations (e.g. start|stop|add)
inside a pod for finer-grained control over rkt containerization concepts and
debugging needs, this proposal introduces new stage1 entrypoints and a
subcommand CLI API that will be used for manipulating applications inside pods.

The primary motivation behind this change is to facilitate the new direction
orchestration systems are taking in how they integrate with container runtimes.
For more details, see
kubernetes#25899 [https://github.com/yujuhong/kubernetes/blob/08dc66113399c89e31f6872f3c638695a6ec6a8d/docs/proposals/container-runtime-interface-v1.md].

API

The envisioned workflow for the app-level API is that after a pod has been
started, users will invoke the rkt CLI to manipulate the pod. The
implementation behaviour consists of application logic on top of the
aforementioned stage1 entrypoints.

The proposed app-level commands are described below.

rkt app sandbox

Initializes an empty pod having no applications. This returns a single line
containing the pod-uuid which can be used to perform application
operations specified below. This also implies the started pod will be injectable.

rkt app sandbox

rkt app add

Injects an application image into a running pod. After this has been called,
the app is prepared and ready to be run via rkt app start.

It first prepares an application rootfs for the application image, creates a
runtime manifest for the app, and then injects the prepared app via an
entrypoint.

rkt app add <pod-uuid> --app=<app-name> <image-name/hash/address/registry-URL> <arguments>

Note: Not every pod will be injectable; it will be configured through an
option when the pod is created..

rkt app start

Starts an application that was previously added (injected) to a pod. This
operation is idempotent; if the specified application is already started, it
will have no effect.

rkt app start <pod-uuid> --app=<app-name> <arguments>

rkt app stop

Stops a running application gracefully. Grace is defined in the app/stop
entrypoint section. This does not remove associated resources (see app rm).

rkt app stop <pod-uuid> --app=<app-name>

rkt app rm

Removes a stopped application from a running pod, including all associated
resources.

rkt app rm <pod-uuid> --app=<app-name> <arguments>

Note: currently, when a pod becomes empty (no apps are running), it will
terminate. This proposal will introduce a --mutable or --allow-empty or
--dumb flag to be used when starting pods, so that the lifecycle management
of the pod is configurable by the user (i.e. it will be possible to create a
pod that won’t be terminated when it is empty).

Resources left over by a stopped application (in default stage1 flavor)

	Rootfs (e.g. /opt/stage2/<app-name>)

	Mounts from volumes (e.g. /opt/stage2/<app-name>/<volume-name>)

	Mounts related to rkt operations (e.g. /opt/stage2/<app-name>/dev/null)

	systemd service files (e.g. <app-name>.service and reaper-<app-name>.service)

	Miscellaneous files (e.g. /rkt/<app-name>.env, /rkt/status...)

rkt app list

Lists the applications that are inside a pod, running or stopped.

rkt app list <pod-uuid> <arguments>

Note: The information returned by list should consist of an app specifier
and status at the very least, the rest is up for discussion.

rkt app status

Returns the execution status of an application inside a pod.

rkt app status <pod-uuid> --app=<app-name> <arguments>

The returned status information for an application would contain the following
details (output format is up for discussion):

type AppStatus struct {
 Name string
 State AppState
 CreatedAt time.Time
 StartedAt time.Time
 FinishedAt time.Time
 ExitCode int64
}

Note: status will be obtained from an annotated JSON file residing in stage1
that contains the required information.
OPEN QUESTION: what is responsible for updating this file? How is concurrent access handled?

rkt app exec

Executes a command inside an application.

rkt app exec <pod-uuid> --app=<app-name> <arguments> -- <command> <command-arguments>

Entrypoints

In order to facilitate the app-level operations API, four new stage1 entrypoints are introduced.
Entrypoints are resolved via annotations found within a pod’s stage1 manifest
(e.g. /var/lib/rkt/pods/run/$uuid/stage1/manifest).

coreos.com/rkt/stage1/app/add

The responsibility of this entrypoint is to receive a prepared app and inject it
into the pod, where it will be started using the app/start entrypoint.

The entrypoint should receive a reference to a runtime manifest of the prepared
app, and perform any necessary setup based on that runtime manifest.

coreos.com/rkt/stage1/app/rm

The responsibility of this entrypoint is to remove an app from a pod. After
rm, starting the application again is not possible - the app must be
re-injected to be re-used.

	receive a reference to an application that resides inside the pod (running or stopped)

	stop the application if its running.

	remove the contents of the application (rootfs) from the pod (keep the logs?) and delete references to it (e.g. service files).

coreos.com/rkt/stage1/app/start

The responsibility of this entrypoint is to start an application that is in the
Prepared state, which is an app that was recently injected.

coreos.com/rkt/stage1/app/stop

The responsibility of this entrypoint is to stop an application that is
in the Running state, by instructing the stage1.

rkt will attempt a graceful shutdown: sending a termination signal
(i.e. SIGTERM) to application and waiting for a grace period for the
application to exit. If the application does not terminate by the end of the
grace period, rkt will forcefully shut it down (i.e. SIGKILL).

App States

Expected set of app states are listed below:

type AppState string

const (
 UnknownAppState AppState = "unknown"

 PreparingAppState AppState = "preparing"

 // Apps that are ready to be used by `app start`.
 PreparedAppState AppState = "prepared"

 RunningAppState AppState = "running"

 // Apps stopped by `app stop`.
 StoppingAppState AppState = "stopping"

 // Apps that finish their execution naturally.
 ExitedAppState AppState = "exited"

 // Once an app is marked for removal, while the removal is being
 // performed, no further operations can be done on that app.
 DeletingAppState AppState = "deleting"
)

Note: State transitions are linear; an app that is in state Exited cannot
transition into Running state.
OPEN QUESTION can a stopped app not be restarted?

Use Cases

Low-level Pod Control

Grant granular access to pods for orchestration systems and allow orchestration
systems to develop their own pod concept on top of the exposed app-level
operations.

Example Workflow

	Create an empty pod.

	Inject applications into the pod.

	Orchestrate the workflow of applications (e.g. app1 has to terminate successfully before app2).

Updates

Enable in-place updates of a pod without disrupting the operations of the pod.

Example Workflow

	Remove old applications without disturbing/restarting the whole pod.

	Inject updated applications.

	Start the updated applications.

Debugging Pods

Allow users to inject debug applications into a pod in production.

Example Workflow

	Deploy an application containing only a Go web service binary.

	Encounter an error not decipherable via the available information (e.g. status info, logs, etc.).

	Add a debug app image containing binaries (e.g. lsof) for debugging the service.

	Enter the pod namespace and use the debug binaries.

 Benchmarks

Benchmarks

rkt has a utility called rkt-monitor that will run rkt with an example
workload, and track the memory and CPU usage. It does this by exec’ing rkt with
an ACI or pod manifest, watching the resource consumption for rkt and all
children processes, and after a timeout killing rkt and printing the results.

Running the Benchmarks

To run the benchmarks, one must have both a built version of rkt-monitor and an
ACI or pod manifest. Additionally, rkt must be available on the PATH.

To build rkt-monitor, cd to tests/rkt-monitor and run the build script in
that directory.

To build one of the provided workloads, run any of the build-* scripts in
tests/rkt-monitor. All scripts require acbuild to be available on the current
PATH. The script will produce either an ACI, or a directory with multiple
ACIs and a pod manifest. In the case of the latter, the ACIs in the created
directory must be imported into rkt’s cas before running rkt-monitor, via the
command rkt fetch --insecure-options=image <newDirectory>/*.

With rkt-monitor and an ACI or a pod manifest, now the benchmarks can be run
via ./rkt-monitor <workload>.

There are four flags available to influence how rkt-monitor runs. -r set the
number of benchmark experiment repetitions, -f save output to files in a
temporary directory with rkt_benchmark prefix, -v will print out the current
resource usage of each process every second. -d can be used to specify a
duration to run the tests for (default of 10s). For example, -d 30s will run
the tests for 30 seconds.

Profiling

rkt will provide two hidden global flags --cpuprofile and --memprofile that can be used for performance profiling.
Setting --cpuprofile=$FILE will make rkt write down the CPU profiles to the $FILE.
Setting --memprofile=$FILE will make rkt write down the Memory profile to the $FILE.
Note that memory profile will only be written down before rkt exits, so during the execution
of rkt, the memory profile will be empty.

The profile result can be viewed by go’s profiling tool, for example:

$ sudo /usr/bin/rkt --cpuprofile=/tmp/cpu.profile --memprofile=/tmp/mem.profile gc --grace-period=0
$ go tool pprof /usr/bin/rkt /tmp/cpu.profile
$ go tool pprof /usr/bin/rkt /tmp/mem.profile

For more profiling tips, please see Profiling Go Programs [https://blog.golang.org/profiling-go-programs].

 v1.4.0

 derek@proton ~> cat /proc/cpuinfo | grep "model name"
model name : Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
model name : Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
model name : Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
model name : Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
derek@proton ~> uname -a
Linux proton 4.4.6 #1-NixOS SMP Wed Mar 16 15:43:17 UTC 2016 x86_64 GNU/Linux

v1.4.0

log-stresser.aci

derek@proton ~/go/src/github.com/rkt/rkt/tests/rkt-monitor> sudo ./rkt-monitor log-stresser.aci
rkt(18493): seconds alive: 10 avg CPU: 28.314541% avg Mem: 2 mB peak Mem: 2 mB
systemd(18515): seconds alive: 9 avg CPU: 0.000000% avg Mem: 4 mB peak Mem: 4 mB
systemd-journal(18517): seconds alive: 9 avg CPU: 88.397098% avg Mem: 7 mB peak Mem: 7 mB
worker(18521): seconds alive: 9 avg CPU: 7.330367% avg Mem: 5 mB peak Mem: 6 mB
load average: Load1: 0.390000 Load5: 0.120000 Load15: 0.080000
container start time: 250721ns
container stop time: 17332926ns

mem-stresser.aci

derek@proton ~/go/src/github.com/rkt/rkt/tests/rkt-monitor> sudo ./rkt-monitor mem-stresser.aci
worker(18634): seconds alive: 9 avg CPU: 98.550401% avg Mem: 318 mB peak Mem: 555 mB
rkt(18599): seconds alive: 10 avg CPU: 3.583814% avg Mem: 2 mB peak Mem: 2 mB
systemd(18628): seconds alive: 9 avg CPU: 0.000000% avg Mem: 4 mB peak Mem: 4 mB
systemd-journal(18630): seconds alive: 9 avg CPU: 0.000000% avg Mem: 6 mB peak Mem: 6 mB
load average: Load1: 0.310000 Load5: 0.150000 Load15: 0.090000
container start time: 259746ns
container stop time: 17593446ns

cpu-stresser.aci

derek@proton ~/go/src/github.com/rkt/rkt/tests/rkt-monitor> sudo ./rkt-monitor cpu-stresser.aci
rkt(18706): seconds alive: 10 avg CPU: 3.587050% avg Mem: 2 mB peak Mem: 2 mB
systemd(18736): seconds alive: 9 avg CPU: 0.000000% avg Mem: 4 mB peak Mem: 4 mB
systemd-journal(18740): seconds alive: 9 avg CPU: 0.000000% avg Mem: 6 mB peak Mem: 6 mB
worker(18744): seconds alive: 9 avg CPU: 88.937493% avg Mem: 808 kB peak Mem: 808 kB
load average: Load1: 0.310000 Load5: 0.130000 Load15: 0.080000
container start time: 296570ns
container stop time: 16124700ns

too-many-apps.podmanifest

derek@proton ~/go/src/github.com/rkt/rkt/tests/rkt-monitor> sudo ./rkt-monitor too-many-apps.podmanifest -d 30s
Identical (aside from PID) worker-binary lines removed
rkt(17227): seconds alive: 20 avg CPU: 9.595387% avg Mem: 3 mB peak Mem: 20 mB
systemd(17253): seconds alive: 17 avg CPU: 0.329028% avg Mem: 16 mB peak Mem: 16 mB
systemd-journal(17255): seconds alive: 17 avg CPU: 0.000000% avg Mem: 6 mB peak Mem: 6 mB
worker-binary(17883): seconds alive: 17 avg CPU: 0.000000% avg Mem: 840 kB peak Mem: 840 kB
load average: Load1: 0.480000 Load5: 0.350000 Load15: 0.300000
container start time: 528476ns
container stop time: 4522346ns

_images/rkt-vs-docker-fetch.png
Q 0
docker daemon rkt fetch
docker fetch redis
(non-root)

_images/execution-flow-systemd.png
systemd-run I service unit
invoking process

fork (2) +exec(3)

stagel

fexec (3)

ork (2) +exec(3)

fork(2) +exec(3)

stage2

stage2

Qs‘ler

systemd-machined

_images/image-chain.png
Fetch [—# Store [—# Render

_images/mutable.png
default farget
<

\

systemd-journald service
systemd-journald socket

_images/image-logical-blocks.png
Fetchers.

Image Store

Tree Store |e—| Stage1-2 fs contents

Direct Stage1-2 renderer

_images/execution-flow-fly.png
bashisystemd/kubelet
invoking process

v
staged
kt

fexec(3)

stagel
v

entrypoint
“coreos.comirki/stage L/run"

fchroot(2)+
exec(3)

stage2
v
stage2
“apps.app.exec”
appl

_images/rkt-systemd.png
default.target

Wants, After Wants, After

app1.service app2.service

{exit,halt,poweroff}.target

reaper-app1.service reaper-app2.service

Wants, After Wants, After

shutdown.service

_images/mutable-app.png
/

prepare-app @-opt-stage2-app]-roots.service reaper-{app].service

defaultiarget

systemd-journald.service
systemd-journald socket

_images/resolv-conf-logic.png
rkt run

--dns(-domain, etc.) passed?

‘Pod-wide resolv .conf
(except - -dns=none)

created by rki

- -dns=none passed?

Did any CNI plugin return DNS?

s resolv.conf?

App image contains

Apps resolv. conf used

No

No resolv.conf

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/comment.png

_images/e